Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book provides comprehensive coverage of 3D vision systems, from vision models and state-of-the-art algorithms to their hardware architectures for implementation on DSPs, FPGA and ASIC chips, and GPUs. It aims to fill the gaps between computer vision algorithms and real-time digital circuit implementations, especially with Verilog HDL design. The organization of this book is vision and hardware module directed, based on Verilog vision modules, 3D vision modules, parallel vision architectures, and Verilog designs for the stereo matching system with various parallel architectures. * Provides…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 13.75MB
- Hong JeongArchitectures for Computer Vision (eBook, ePUB)123,99 €
- James B. KuoLow-Voltage SOI CMOS VLSI Devices and Circuits (eBook, PDF)147,99 €
- A. B. BhattacharyyaCompact MOSFET Models for VLSI Design (eBook, PDF)106,99 €
- Yamin LiComputer Principles and Design in Verilog HDL (eBook, PDF)111,99 €
- David DomanEngineering the CMOS Library (eBook, PDF)107,99 €
- Ashok K. GoelHigh-Speed VLSI Interconnections (eBook, PDF)168,99 €
- Theo GeversColor in Computer Vision (eBook, PDF)107,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 31. Juli 2014
- Englisch
- ISBN-13: 9781118659212
- Artikelnr.: 41431990
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 31. Juli 2014
- Englisch
- ISBN-13: 9781118659212
- Artikelnr.: 41431990
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xiii
Part One VERILOG HDL
1 Introduction 3
1.1 Computer Architectures for Vision 3
1.2 Algorithms for Computer Vision 6
1.3 Computing Devices for Vision 7
1.4 Design Flow for Vision Architectures 8
Problems 9
References 10
2 Verilog HDL, Communication, and Control 11
2.1 The Verilog System 11
2.2 Hello, World! 12
2.3 Modules and Ports 14
2.4 UUT and TB 17
2.5 Data Types and Operations 17
2.6 Assignments 20
2.7 Structural-Behavioral Design Elements 22
2.8 Tasks and Functions 25
2.9 Syntax Summary 27
2.10 Simulation-Synthesis 29
2.11 Verilog System Tasks and Functions 30
2.12 Converting Vision Algorithms into Verilog HDL Codes 33
2.13 Design Method for Vision Architecture 36
2.14 Communication by Name Reference 38
2.15 Synchronous Port Communication 40
2.16 Asynchronous Port Communication 44
2.17 Packing and Unpacking 50
2.18 Module Control 51
2.19 Procedural Block Control 55
Problems 61
References 62
3 Processor, Memory, and Array 63
3.1 Image Processing System 63
3.2 Taxonomy of Algorithms and Architectures 64
3.3 Neighborhood Processor 66
3.4 BP Processor 68
3.5 DP Processor 70
3.6 Forward and Backward Processors 73
3.7 Frame Buffer and Image Memory 74
3.8 Multidimensional Array 76
3.9 Queue 77
3.10 Stack 79
3.11 Linear Systolic Array 81
Problems 87
References 88
4 Verilog Vision Simulator 89
4.1 Vision Simulator 90
4.2 Image Format Conversion 91
4.3 Line-based Vision Simulator Principle 98
4.4 LVSIM Top Module 100
4.5 LVSIM IO System 102
4.6 LVSIM RAM and Processor 105
4.7 Frame-based Vision Simulator Principle 109
4.8 FVSIM Top Module 111
4.9 FVSIM IO System 112
4.10 FVSIM RAM and Processor 116
4.11 OpenCV Interface 122
Problems 125
References 128
Part Two VISION PRINCIPLES
5 Energy Function 131
5.1 Discrete Labeling Problem 132
5.2 MRF Model 132
5.3 Energy Function 135
5.4 Energy Function Models 136
5.5 Free Energy 138
5.6 Inference Schemes 139
5.7 Learning Methods 141
5.8 Structure of the Energy Function 142
5.9 Basic Energy Functions 144
Problems 147
References 147
6 Stereo Vision 151
6.1 Camera Systems 151
6.2 Camera Matrices 153
6.3 Camera Calibration 156
6.4 Correspondence Geometry 158
6.5 Camera Geometry 162
6.6 Scene Geometry 163
6.7 Rectification 165
6.8 Appearance Models 167
6.9 Fundamental Constraints 169
6.10 Segment Constraints 171
6.11 Constraints in Discrete Space 172
6.12 Constraints in Frequency Space 176
6.13 Basic Energy Functions 179
Problems 180
References 180
7 Motion and Vision Modules 183
7.1 3D Motion 184
7.2 Direct Motion Estimation 187
7.3 Structure from Optical Flow 188
7.4 Factorization Method 191
7.5 Constraints on the Data Term 192
7.6 Continuity Equation 197
7.7 The Prior Term 197
7.8 Energy Minimization 201
7.9 Binocular Motion 203
7.10 Segmentation Prior 205
7.11 Blur Diameter 205
7.12 Blur Diameter and Disparity 207
7.13 Surface Normal and Disparity 208
7.14 Surface Normal and Blur Diameter 209
7.15 Links between Vision Modules 210
Problems 212
References 213
Part Three VISION ARCHITECTURES
8 Relaxation for Energy Minimization 219
8.1 Euler-Lagrange Equation of the Energy Function 220
8.2 Discrete Diffusion and Biharminic Operators 224
8.3 SOR Equation 225
8.4 Relaxation Equation 226
8.5 Relaxation Graph 231
8.6 Relaxation Machine 234
8.7 Affine Graph 236
8.8 Fast Relaxation Machine 238
8.9 State Memory of Fast Relaxation Machine 240
8.10 Comparison of Relaxation Machines 242
Problems 243
References 244
9 Dynamic Programming for Energy Minimization 247
9.1 DP for Energy Minimization 247
9.2 N-best Parallel DP 254
9.3 N-best Serial DP 255
9.4 Extended DP 256
9.5 Hidden Markov Model 260
9.6 Inside-Outside Algorithm 265
Problems 273
References 274
10 Belief Propagation and Graph Cuts for Energy Minimization 277
10.1 Belief in MRF Factor System 278
10.2 Belief in Pairwise MRF System 280
10.3 BP in Discrete Space 283
10.4 BP in Vector Space 285
10.5 Flow Network for Energy Function 288
10.6 Swap Move Algorithm 291
10.7 Expansion Move Algorithm 295
Problems 299
References 300
Part Four VERILOG DESIGN
11 Relaxation for Stereo Matching 305
11.1 Euler-Lagrange Equation 305
11.2 Discretization and Iteration 307
11.3 Relaxation Algorithm for Stereo Matching 308
11.4 Relaxation Machine 309
11.5 Overall System 309
11.6 IO Circuit 312
11.7 Updation Circuit 314
11.8 Circuit for the Data Term 317
11.9 Circuit for the Differential 319
11.10 Circuit for the Neighborhood 320
11.11 Functions for Saturation Arithmetic 321
11.12 Functions for Minimum Argument 323
11.13 Simulation 324
Problems 325
References 326
12 Dynamic Programming for Stereo Matching 327
12.1 Search Space 327
12.2 Line Processing 330
12.3 Computational Space 331
12.4 Energy Equations 333
12.5 DP Algorithm 334
12.6 Architecture 337
12.7 Overall Scheme 338
12.8 FIFO Buffer 342
12.9 Reading and Writing 344
12.10 Initialization 345
12.11 Forward Pass 347
12.12 Backward Pass 352
12.13 Combinational Circuits 353
12.14 Simulation 355
Problems 358
References 358
13 Systolic Array for Stereo Matching 361
13.1 Search Space 361
13.2 Systolic Transformation 363
13.3 Fundamental Systolic Arrays 365
13.4 Search Spaces of the Fundamental Systolic Arrays 368
13.5 Systolic Algorithm 371
13.6 Common Platform of the Circuits 373
13.7 Forward Backward and Right Left Algorithm 375
13.8 FBR and FBL Overall Scheme 378
13.9 FBR and FBL FIFO Buffer 384
13.10 FBR and FBL Reading and Writing 387
13.11 FBR and FBL Preprocessing 388
13.12 FBR and FBL Initialization 389
13.13 FBR and FBL Forward Pass 391
13.14 FBR and FBL Backward Pass 394
13.15 FBR and FBL Simulation 395
13.16 Backward Backward and Right Left Algorithm 397
13.17 BBR and BBL Overall Scheme 400
13.18 BBR and BBL Initialization 406
13.19 BBR and BBL Forward Pass 407
13.20 BBR and BBL Backward Pass 410
13.21 BBR and BBL Simulation 412
Problems 414
References 415
14 Belief Propagation for Stereo Matching 417
14.1 Message Representation 418
14.2 Window Processing 420
14.3 BP Machine 421
14.4 Overall System 422
14.5 IO Circuit 425
14.6 Sampling Circuit 427
14.7 Circuit for the Data Term 429
14.8 Circuit for the Input Belief Message Matrix 431
14.9 Circuit for the Output Belief Message Matrix 434
14.10 Circuit for the Updation of Message Matrix 435
14.11 Circuit for the Disparity 436
14.12 Saturation Arithmetic 437
14.13 Smoothness 439
14.14 Minimum Argument 441
14.15 Simulation 442
Problems 443
References 444
Index 447
Preface xiii
Part One VERILOG HDL
1 Introduction 3
1.1 Computer Architectures for Vision 3
1.2 Algorithms for Computer Vision 6
1.3 Computing Devices for Vision 7
1.4 Design Flow for Vision Architectures 8
Problems 9
References 10
2 Verilog HDL, Communication, and Control 11
2.1 The Verilog System 11
2.2 Hello, World! 12
2.3 Modules and Ports 14
2.4 UUT and TB 17
2.5 Data Types and Operations 17
2.6 Assignments 20
2.7 Structural-Behavioral Design Elements 22
2.8 Tasks and Functions 25
2.9 Syntax Summary 27
2.10 Simulation-Synthesis 29
2.11 Verilog System Tasks and Functions 30
2.12 Converting Vision Algorithms into Verilog HDL Codes 33
2.13 Design Method for Vision Architecture 36
2.14 Communication by Name Reference 38
2.15 Synchronous Port Communication 40
2.16 Asynchronous Port Communication 44
2.17 Packing and Unpacking 50
2.18 Module Control 51
2.19 Procedural Block Control 55
Problems 61
References 62
3 Processor, Memory, and Array 63
3.1 Image Processing System 63
3.2 Taxonomy of Algorithms and Architectures 64
3.3 Neighborhood Processor 66
3.4 BP Processor 68
3.5 DP Processor 70
3.6 Forward and Backward Processors 73
3.7 Frame Buffer and Image Memory 74
3.8 Multidimensional Array 76
3.9 Queue 77
3.10 Stack 79
3.11 Linear Systolic Array 81
Problems 87
References 88
4 Verilog Vision Simulator 89
4.1 Vision Simulator 90
4.2 Image Format Conversion 91
4.3 Line-based Vision Simulator Principle 98
4.4 LVSIM Top Module 100
4.5 LVSIM IO System 102
4.6 LVSIM RAM and Processor 105
4.7 Frame-based Vision Simulator Principle 109
4.8 FVSIM Top Module 111
4.9 FVSIM IO System 112
4.10 FVSIM RAM and Processor 116
4.11 OpenCV Interface 122
Problems 125
References 128
Part Two VISION PRINCIPLES
5 Energy Function 131
5.1 Discrete Labeling Problem 132
5.2 MRF Model 132
5.3 Energy Function 135
5.4 Energy Function Models 136
5.5 Free Energy 138
5.6 Inference Schemes 139
5.7 Learning Methods 141
5.8 Structure of the Energy Function 142
5.9 Basic Energy Functions 144
Problems 147
References 147
6 Stereo Vision 151
6.1 Camera Systems 151
6.2 Camera Matrices 153
6.3 Camera Calibration 156
6.4 Correspondence Geometry 158
6.5 Camera Geometry 162
6.6 Scene Geometry 163
6.7 Rectification 165
6.8 Appearance Models 167
6.9 Fundamental Constraints 169
6.10 Segment Constraints 171
6.11 Constraints in Discrete Space 172
6.12 Constraints in Frequency Space 176
6.13 Basic Energy Functions 179
Problems 180
References 180
7 Motion and Vision Modules 183
7.1 3D Motion 184
7.2 Direct Motion Estimation 187
7.3 Structure from Optical Flow 188
7.4 Factorization Method 191
7.5 Constraints on the Data Term 192
7.6 Continuity Equation 197
7.7 The Prior Term 197
7.8 Energy Minimization 201
7.9 Binocular Motion 203
7.10 Segmentation Prior 205
7.11 Blur Diameter 205
7.12 Blur Diameter and Disparity 207
7.13 Surface Normal and Disparity 208
7.14 Surface Normal and Blur Diameter 209
7.15 Links between Vision Modules 210
Problems 212
References 213
Part Three VISION ARCHITECTURES
8 Relaxation for Energy Minimization 219
8.1 Euler-Lagrange Equation of the Energy Function 220
8.2 Discrete Diffusion and Biharminic Operators 224
8.3 SOR Equation 225
8.4 Relaxation Equation 226
8.5 Relaxation Graph 231
8.6 Relaxation Machine 234
8.7 Affine Graph 236
8.8 Fast Relaxation Machine 238
8.9 State Memory of Fast Relaxation Machine 240
8.10 Comparison of Relaxation Machines 242
Problems 243
References 244
9 Dynamic Programming for Energy Minimization 247
9.1 DP for Energy Minimization 247
9.2 N-best Parallel DP 254
9.3 N-best Serial DP 255
9.4 Extended DP 256
9.5 Hidden Markov Model 260
9.6 Inside-Outside Algorithm 265
Problems 273
References 274
10 Belief Propagation and Graph Cuts for Energy Minimization 277
10.1 Belief in MRF Factor System 278
10.2 Belief in Pairwise MRF System 280
10.3 BP in Discrete Space 283
10.4 BP in Vector Space 285
10.5 Flow Network for Energy Function 288
10.6 Swap Move Algorithm 291
10.7 Expansion Move Algorithm 295
Problems 299
References 300
Part Four VERILOG DESIGN
11 Relaxation for Stereo Matching 305
11.1 Euler-Lagrange Equation 305
11.2 Discretization and Iteration 307
11.3 Relaxation Algorithm for Stereo Matching 308
11.4 Relaxation Machine 309
11.5 Overall System 309
11.6 IO Circuit 312
11.7 Updation Circuit 314
11.8 Circuit for the Data Term 317
11.9 Circuit for the Differential 319
11.10 Circuit for the Neighborhood 320
11.11 Functions for Saturation Arithmetic 321
11.12 Functions for Minimum Argument 323
11.13 Simulation 324
Problems 325
References 326
12 Dynamic Programming for Stereo Matching 327
12.1 Search Space 327
12.2 Line Processing 330
12.3 Computational Space 331
12.4 Energy Equations 333
12.5 DP Algorithm 334
12.6 Architecture 337
12.7 Overall Scheme 338
12.8 FIFO Buffer 342
12.9 Reading and Writing 344
12.10 Initialization 345
12.11 Forward Pass 347
12.12 Backward Pass 352
12.13 Combinational Circuits 353
12.14 Simulation 355
Problems 358
References 358
13 Systolic Array for Stereo Matching 361
13.1 Search Space 361
13.2 Systolic Transformation 363
13.3 Fundamental Systolic Arrays 365
13.4 Search Spaces of the Fundamental Systolic Arrays 368
13.5 Systolic Algorithm 371
13.6 Common Platform of the Circuits 373
13.7 Forward Backward and Right Left Algorithm 375
13.8 FBR and FBL Overall Scheme 378
13.9 FBR and FBL FIFO Buffer 384
13.10 FBR and FBL Reading and Writing 387
13.11 FBR and FBL Preprocessing 388
13.12 FBR and FBL Initialization 389
13.13 FBR and FBL Forward Pass 391
13.14 FBR and FBL Backward Pass 394
13.15 FBR and FBL Simulation 395
13.16 Backward Backward and Right Left Algorithm 397
13.17 BBR and BBL Overall Scheme 400
13.18 BBR and BBL Initialization 406
13.19 BBR and BBL Forward Pass 407
13.20 BBR and BBL Backward Pass 410
13.21 BBR and BBL Simulation 412
Problems 414
References 415
14 Belief Propagation for Stereo Matching 417
14.1 Message Representation 418
14.2 Window Processing 420
14.3 BP Machine 421
14.4 Overall System 422
14.5 IO Circuit 425
14.6 Sampling Circuit 427
14.7 Circuit for the Data Term 429
14.8 Circuit for the Input Belief Message Matrix 431
14.9 Circuit for the Output Belief Message Matrix 434
14.10 Circuit for the Updation of Message Matrix 435
14.11 Circuit for the Disparity 436
14.12 Saturation Arithmetic 437
14.13 Smoothness 439
14.14 Minimum Argument 441
14.15 Simulation 442
Problems 443
References 444
Index 447