Artificial Intelligence and Big Data for Financial Risk Management (eBook, ePUB)
Intelligent Applications
Redaktion: Metawa, Noura; Metawa, Saad; Hassan, M. Kabir
41,95 €
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
41,95 €
Als Download kaufen
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Artificial Intelligence and Big Data for Financial Risk Management (eBook, ePUB)
Intelligent Applications
Redaktion: Metawa, Noura; Metawa, Saad; Hassan, M. Kabir
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book presents a collection of high-quality contributions on the state-of-the-art in Artificial Intelligence and Big Data analysis as it relates to financial risk management applications. It brings together, in one place, the latest thinking on an emerging topic and includes principles, reviews, examples, and research directions.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.5MB
Andere Kunden interessierten sich auch für
- Artificial Intelligence and Big Data for Financial Risk Management (eBook, PDF)41,95 €
- Cyber Security and Business Intelligence (eBook, ePUB)41,95 €
- Paul MartinInsider Risk and Personnel Security (eBook, ePUB)37,95 €
- Analytics in Finance and Risk Management (eBook, ePUB)52,95 €
- The Adoption of Fintech (eBook, ePUB)64,95 €
- Eduardo RodriguezRisk Analytics (eBook, ePUB)78,95 €
- The Digitalization of Financial Markets (eBook, ePUB)41,95 €
-
-
-
This book presents a collection of high-quality contributions on the state-of-the-art in Artificial Intelligence and Big Data analysis as it relates to financial risk management applications. It brings together, in one place, the latest thinking on an emerging topic and includes principles, reviews, examples, and research directions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 246
- Erscheinungstermin: 31. August 2022
- Englisch
- ISBN-13: 9781000645293
- Artikelnr.: 64560680
- Verlag: Taylor & Francis
- Seitenzahl: 246
- Erscheinungstermin: 31. August 2022
- Englisch
- ISBN-13: 9781000645293
- Artikelnr.: 64560680
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Noura Metawa is Assistant Professor of Finance at the Faculty of Commerce, Mansoura University, Egypt, and at the College of Business Administration, University of Sharjah, Sharjah, UAE. M. Kabir Hassan is Professor of Finance in the Department of Economics and Finance at the University of New Orleans, Louisiana, USA. Saad Metawa is Professor of Finance at the Faculty of Commerce, Mansoura University, Dakahliya, Egypt.
1: Grey Model as a tool in dynamic portfolio selection: simple applications 2: Predicting Financial Statement Fraud Using Artificial Neural Networks 3: Bank Network Credit Model and Risk Management System Based on Big Data Technology 4: Deep Learning in Detecting Financial Statement Fraud: An Application of Deep Neural Network (Dnn) 5: Predicting Stock Return Risk and Volatility Using Neural Network: The case of the Egyptian Stock Exchange 6: Operation Analysis of Financial Sharing Center Based On Big Data Sharing Technology: Taking SF Express as an Example 7: Optimization Algorithms for Multiple-Asset Portfolios with Machine Learning Techniques: Theoretical Foundations of Optimum and Coherent Economic Capital Structures 8: Random Forest and Grey methodology in dynamic portfolio selection 9: The Role of Blockchain in Financial Applications: Architecture, Benefit, and Challenges 10: Using Computer Block Chain Technology to Analyze the Development Trend of China's Modern Financial Industry 11: Financial Efficiency Differentiation Based on Data Quantitative Analysis under Big Data Technology 12: Optimization Algorithms for Multiple-Asset Portfolios with Machine Learning Techniques: Practical Applications with Forecasting of Optimum and Coherent Economic Capital Structures 13: An Overview of Neural Network in Financial Risk Management
1: Grey Model as a tool in dynamic portfolio selection: simple applications 2: Predicting Financial Statement Fraud Using Artificial Neural Networks 3: Bank Network Credit Model and Risk Management System Based on Big Data Technology 4: Deep Learning in Detecting Financial Statement Fraud: An Application of Deep Neural Network (Dnn) 5: Predicting Stock Return Risk and Volatility Using Neural Network: The case of the Egyptian Stock Exchange 6: Operation Analysis of Financial Sharing Center Based On Big Data Sharing Technology: Taking SF Express as an Example 7: Optimization Algorithms for Multiple-Asset Portfolios with Machine Learning Techniques: Theoretical Foundations of Optimum and Coherent Economic Capital Structures 8: Random Forest and Grey methodology in dynamic portfolio selection 9: The Role of Blockchain in Financial Applications: Architecture, Benefit, and Challenges 10: Using Computer Block Chain Technology to Analyze the Development Trend of China's Modern Financial Industry 11: Financial Efficiency Differentiation Based on Data Quantitative Analysis under Big Data Technology 12: Optimization Algorithms for Multiple-Asset Portfolios with Machine Learning Techniques: Practical Applications with Forecasting of Optimum and Coherent Economic Capital Structures 13: An Overview of Neural Network in Financial Risk Management