Richard E. Neapolitan, Xia Jiang
Artificial Intelligence (eBook, ePUB)
With an Introduction to Machine Learning, Second Edition
41,95 €
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
41,95 €
Als Download kaufen
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
41,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Richard E. Neapolitan, Xia Jiang
Artificial Intelligence (eBook, ePUB)
With an Introduction to Machine Learning, Second Edition
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The first edition of this popular textbook, Contemporary Artificial Intelligence , provided an accessible and student friendly introduction to AI. This fully revised and expanded update retains the same accessibility and problem-solving approach, while providing new material and methods, including neural networks and deep learning.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 17.79MB
Andere Kunden interessierten sich auch für
- Shih-Chung KangRobot Development Using Microsoft Robotics Developer Studio (eBook, ePUB)75,95 €
- Deyi LiArtificial Intelligence with Uncertainty (eBook, ePUB)54,95 €
- Niklas HagebackThe Virtual Mind (eBook, ePUB)48,95 €
- Roman V. YampolskiyArtificial Superintelligence (eBook, ePUB)39,95 €
- The Biometric Computing (eBook, ePUB)54,95 €
- Background Modeling and Foreground Detection for Video Surveillance (eBook, ePUB)46,95 €
- Irina RishSparse Modeling (eBook, ePUB)46,95 €
-
-
-
The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update retains the same accessibility and problem-solving approach, while providing new material and methods, including neural networks and deep learning.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 480
- Erscheinungstermin: 12. März 2018
- Englisch
- ISBN-13: 9781351384384
- Artikelnr.: 56831591
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 480
- Erscheinungstermin: 12. März 2018
- Englisch
- ISBN-13: 9781351384384
- Artikelnr.: 56831591
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Richard E. Neapolitan is professor emeritus of computer science at Northeastern Illinois University and a former professor of bioinformatics at Northwestern University. He is currently president of Bayesian Network Solutions. His research interests include probability and statistics, decision support systems, cognitive science, and applications of probabilistic modeling to fields such as medicine, biology, and finance. Dr. Neapolitan is a prolific author and has published in the most prestigious journals in the broad area of reasoning under uncertainty. He has previously written five books, including the seminal 1989 Bayesian network text Probabilistic Reasoning in Expert Systems; Learning Bayesian Networks (2004); Foundations of Algorithms (1996, 1998, 2003, 2010, 2015), which has been translated into three languages; Probabilistic Methods for Financial and Marketing Informatics (2007); and Probabilistic Methods for Bioinformatics (2009). His approach to textbook writing is distinct in that he introduces a concept or methodology with simple examples, and then provides the theoretical underpinning. As a result, his books have the reputation for making difficult material easy to understand without sacrificing scientific rigor.
Xia Jiang is an associate professor in the Department of Biomedical Informatics at the University of Pittsburgh School of Medicine. She has over 16 years of teaching and research experience using artificial intelligence, machine learning, Bayesian networks, and causal learning to model and solve problems in biology, medicine, and translational science. Dr. Jiang pioneered the application of Bayesian networks and information theory to the task of learning causal interactions such as genetic epistasis from data, and she has conducted innovative research in the areas of cancer informatics, probabilistic medical decision support, and biosurveillance. She is the coauthor of the book Probabilistic Methods for Financial and Marketing Informatics (2007).
Xia Jiang is an associate professor in the Department of Biomedical Informatics at the University of Pittsburgh School of Medicine. She has over 16 years of teaching and research experience using artificial intelligence, machine learning, Bayesian networks, and causal learning to model and solve problems in biology, medicine, and translational science. Dr. Jiang pioneered the application of Bayesian networks and information theory to the task of learning causal interactions such as genetic epistasis from data, and she has conducted innovative research in the areas of cancer informatics, probabilistic medical decision support, and biosurveillance. She is the coauthor of the book Probabilistic Methods for Financial and Marketing Informatics (2007).
1. Introduction to Artificial Intelligence Part 1: Logical Intelligence 2.
Propositional Logic 3. First-Order Logic 4. Certain Knowledge
Representation 5. Learning Deterministic Models Part 2: Probabilistic
Intelligence 6. Probability 7. Uncertain Knowledge Representation 8.
Advanced Properties of Bayesian Network 9. Decision Analysis 10. Learning
Probabilistic Model Parameters 11. Learning Probabilistic Model Structure
12. Unsupervised Learning and Reinforcement Learning Part 3: Emergent
Intelligence 13. Evolutionary Computation 14. Swarm Intelligence Part 4:
Neural Intelligence 15. Neural Networks and Deep Learning Part 5: Language
Understanding 16. Natural Language Understanding
Propositional Logic 3. First-Order Logic 4. Certain Knowledge
Representation 5. Learning Deterministic Models Part 2: Probabilistic
Intelligence 6. Probability 7. Uncertain Knowledge Representation 8.
Advanced Properties of Bayesian Network 9. Decision Analysis 10. Learning
Probabilistic Model Parameters 11. Learning Probabilistic Model Structure
12. Unsupervised Learning and Reinforcement Learning Part 3: Emergent
Intelligence 13. Evolutionary Computation 14. Swarm Intelligence Part 4:
Neural Intelligence 15. Neural Networks and Deep Learning Part 5: Language
Understanding 16. Natural Language Understanding
1. Introduction to Artificial Intelligence Part 1: Logical Intelligence 2.
Propositional Logic 3. First-Order Logic 4. Certain Knowledge
Representation 5. Learning Deterministic Models Part 2: Probabilistic
Intelligence 6. Probability 7. Uncertain Knowledge Representation 8.
Advanced Properties of Bayesian Network 9. Decision Analysis 10. Learning
Probabilistic Model Parameters 11. Learning Probabilistic Model Structure
12. Unsupervised Learning and Reinforcement Learning Part 3: Emergent
Intelligence 13. Evolutionary Computation 14. Swarm Intelligence Part 4:
Neural Intelligence 15. Neural Networks and Deep Learning Part 5: Language
Understanding 16. Natural Language Understanding
Propositional Logic 3. First-Order Logic 4. Certain Knowledge
Representation 5. Learning Deterministic Models Part 2: Probabilistic
Intelligence 6. Probability 7. Uncertain Knowledge Representation 8.
Advanced Properties of Bayesian Network 9. Decision Analysis 10. Learning
Probabilistic Model Parameters 11. Learning Probabilistic Model Structure
12. Unsupervised Learning and Reinforcement Learning Part 3: Emergent
Intelligence 13. Evolutionary Computation 14. Swarm Intelligence Part 4:
Neural Intelligence 15. Neural Networks and Deep Learning Part 5: Language
Understanding 16. Natural Language Understanding