Bhuvan Unhelkar, Tad Gonsalves
Artificial Intelligence for Business Optimization (eBook, ePUB)
Research and Applications
47,95 €
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
47,95 €
Als Download kaufen
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
24 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
47,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
24 °P sammeln
Bhuvan Unhelkar, Tad Gonsalves
Artificial Intelligence for Business Optimization (eBook, ePUB)
Research and Applications
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Artificial Intelligence for Business Optimization: Research and Applications is primarily a business book that discusses the research and associated practical application of Artificial Intelligence (AI) and Machine Learning (ML) in order to achieve Business Optimization (BO).
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.51MB
Andere Kunden interessierten sich auch für
- Bhuvan UnhelkarArtificial Intelligence for Business Optimization (eBook, PDF)47,95 €
- Artificial Intelligence for Business (eBook, ePUB)51,95 €
- Kapil SharmaBlockchain (eBook, ePUB)36,95 €
- AI, Machine Learning and Deep Learning (eBook, ePUB)52,95 €
- Computational Intelligence for Cybersecurity Management and Applications (eBook, ePUB)52,95 €
- Hamed TaherdoostDigital Transformation Roadmap (eBook, ePUB)47,95 €
- Artificial Intelligence for Business (eBook, PDF)51,95 €
-
-
-
Artificial Intelligence for Business Optimization: Research and Applications is primarily a business book that discusses the research and associated practical application of Artificial Intelligence (AI) and Machine Learning (ML) in order to achieve Business Optimization (BO).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 324
- Erscheinungstermin: 9. August 2021
- Englisch
- ISBN-13: 9781000409475
- Artikelnr.: 62133481
- Verlag: Taylor & Francis
- Seitenzahl: 324
- Erscheinungstermin: 9. August 2021
- Englisch
- ISBN-13: 9781000409475
- Artikelnr.: 62133481
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr Bhuvan Unhelkar (BE, MDBA, MSc, PhD, FACS) has extensive strategic and hands- on professional experience in the Information and Communication Technologies (ICT) industry. He is a full Professor and lead faculty of IT at the University of South Florida Sarasota-Manatee (USFSM), and is the founder and Consultant at MethodScience and PlatiFi. He is also an adjunct Professor at Western Sydney University, Australia and an honorary Professor at Amity University, India . His current industrial research interests include AI and ML in Business Optimization, Big Data and business value and Business Analysis in the context of Agile. Dr. Unhelkar holds a Certificate-IV in TAA and TAE, Professional Scrum Master - I, SAFe (Scaled Agile Framework for Enterprise) Leader and is a Certified Business Analysis Professional® (CBAP of the IIBA). Tad Gonsalves is full Professor in the Department of Information & Communication Sciences, Sophia University, Tokyo, Japan. Dr. Gonsalves' research areas include Bio-inspired Optimization techniques and application of Deep Learning techniques to diverse problems like autonomous driving, drones, digital art and computational linguistics. He holds a BS in theoretical Physics and MS in Astrophysics and earned his PhD in Information Systems from Sophia University, Tokyo, Japan. His research lab in Tokyo specializes in multi-GPU computing. Dr. Gonsalves is the author of Introduction to AI: A Non-Technical Introduction, (Sophia Univ. Press, 2017) which serves as a standard AI textbook for the university curriculum.
Foreword by Andy Lyman. Preface. Readers. Figures. Acknowledgments.
Authors. 1 Artificial intelligence and machine learning: Opportunities for
digital business. 2 Data to decisions: Evolving interrelationships. 3
Digital leadership: Strategies for AI adoption. 4 Machine learning types:
Statistical understanding in the business context. 5 Dynamicity in
learning: Smart selection of learning techniques. 6 Intelligent business
processes with embedded analytics. 7 Adopting data-driven culture:
Leadership and change management for business optimization. 8 Quality and
risks: Assurance and control in BO. 9 Cybersecurity in BO: Significance and
challenges for digital business. 10 Natural intelligence and social aspects
of AI-based decisions. 11 Investing in the future technology of
self-driving vehicles: Case study. Appendix A: Frameworks and libraries for
ML. Appendix B: Datasets for ML and predictive analytics. Appendix C: AI
and BO research areas. Index.
Authors. 1 Artificial intelligence and machine learning: Opportunities for
digital business. 2 Data to decisions: Evolving interrelationships. 3
Digital leadership: Strategies for AI adoption. 4 Machine learning types:
Statistical understanding in the business context. 5 Dynamicity in
learning: Smart selection of learning techniques. 6 Intelligent business
processes with embedded analytics. 7 Adopting data-driven culture:
Leadership and change management for business optimization. 8 Quality and
risks: Assurance and control in BO. 9 Cybersecurity in BO: Significance and
challenges for digital business. 10 Natural intelligence and social aspects
of AI-based decisions. 11 Investing in the future technology of
self-driving vehicles: Case study. Appendix A: Frameworks and libraries for
ML. Appendix B: Datasets for ML and predictive analytics. Appendix C: AI
and BO research areas. Index.
Foreword by Andy Lyman. Preface. Readers. Figures. Acknowledgments.
Authors. 1 Artificial intelligence and machine learning: Opportunities for
digital business. 2 Data to decisions: Evolving interrelationships. 3
Digital leadership: Strategies for AI adoption. 4 Machine learning types:
Statistical understanding in the business context. 5 Dynamicity in
learning: Smart selection of learning techniques. 6 Intelligent business
processes with embedded analytics. 7 Adopting data-driven culture:
Leadership and change management for business optimization. 8 Quality and
risks: Assurance and control in BO. 9 Cybersecurity in BO: Significance and
challenges for digital business. 10 Natural intelligence and social aspects
of AI-based decisions. 11 Investing in the future technology of
self-driving vehicles: Case study. Appendix A: Frameworks and libraries for
ML. Appendix B: Datasets for ML and predictive analytics. Appendix C: AI
and BO research areas. Index.
Authors. 1 Artificial intelligence and machine learning: Opportunities for
digital business. 2 Data to decisions: Evolving interrelationships. 3
Digital leadership: Strategies for AI adoption. 4 Machine learning types:
Statistical understanding in the business context. 5 Dynamicity in
learning: Smart selection of learning techniques. 6 Intelligent business
processes with embedded analytics. 7 Adopting data-driven culture:
Leadership and change management for business optimization. 8 Quality and
risks: Assurance and control in BO. 9 Cybersecurity in BO: Significance and
challenges for digital business. 10 Natural intelligence and social aspects
of AI-based decisions. 11 Investing in the future technology of
self-driving vehicles: Case study. Appendix A: Frameworks and libraries for
ML. Appendix B: Datasets for ML and predictive analytics. Appendix C: AI
and BO research areas. Index.