Artificial Intelligence in Medicine (eBook, ePUB)
Redaktion: Stephan, Thompson
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Artificial Intelligence in Medicine (eBook, ePUB)
Redaktion: Stephan, Thompson
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In the ever-evolving realm of healthcare, "Artificial Intelligence in Medicine" emerges as a trailblazing guide, offering an exhaustive exploration of the transformative power of Artificial Intelligence (AI).
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 10.1MB
Andere Kunden interessierten sich auch für
- Artificial Intelligence in Medicine (eBook, PDF)52,95 €
- Vassilka Tabakovae-Learning in Medical Physics and Engineering (eBook, ePUB)48,95 €
- Paul S. GanneyIntroduction to Bioinformatics and Clinical Scientific Computing (eBook, ePUB)81,95 €
- K. ShankarArtificial Intelligence for the Internet of Health Things (eBook, ePUB)48,95 €
- Artificial Intelligence Technologies for Computational Biology (eBook, ePUB)48,95 €
- Soft Computing Techniques in Connected Healthcare Systems (eBook, ePUB)125,95 €
- Vassilka Tabakovae-Learning in Medical Physics and Engineering (eBook, PDF)48,95 €
-
-
-
In the ever-evolving realm of healthcare, "Artificial Intelligence in Medicine" emerges as a trailblazing guide, offering an exhaustive exploration of the transformative power of Artificial Intelligence (AI).
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 18. Juli 2024
- Englisch
- ISBN-13: 9781040037522
- Artikelnr.: 72272594
- Verlag: Taylor & Francis
- Erscheinungstermin: 18. Juli 2024
- Englisch
- ISBN-13: 9781040037522
- Artikelnr.: 72272594
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Thompson Stephan earned his Ph.D. in Computer Science and Engineering from Pondicherry University, India, in 2018. Currently serving as an Associate Professor in the Department of Computer Science & Engineering at Graphic Era Deemed to be University, Dehradun, Uttarakhand, India, he achieved recognition among the world's top 2% most influential scientists for 2023, a distinction jointly conferred by Elsevier and Stanford University, USA. Acknowledged for academic excellence during his master's degree, he secured a university rank. Additionally, he was honored with the Best Researcher Award-2020 and the Protsahan Research Award in 2023 by the IEEE Bangalore Section, India. His research interests primarily focus on implementing and applying artificial intelligence techniques in practical settings. He has authored numerous technical research papers published in renowned journals and conferences by IEEE, Elsevier, Springer, and others. Actively serving as a reviewer for esteemed international journals and working as a book editor, Thompson Stephan is dedicated to advancing the field.
PART 1. Foundations of AI in healthcare, 1. Exploring deep learning approaches for cardiac arrhythmia diagnosis, 2. Neural networks and LDA-based machine learning framework for the early detection of breast cancer, 3. Advanced deep learning algorithms for early ocular disease detection using fundus images, PART 2. Disease detection and diagnosis, 4. A vision transformer-based approach for brain tumor detection, 5. Early detection of skin cancer through human-computer collaboration, 6. Improved mass detection in mammogram images with Dual Tree Complex Wavelet Transform and Fourier Descriptors, 7. A deep learning-based model for early detection of COVID-19 using chest X-ray images, 8. Detection of seizure activity in fMRI images using deep learning techniques, PART 3. Disease prediction and public health, 9. Improving prediction accuracy for neo-adjuvant chemotherapy response in breast cancer through 3D image segmentation and deep learning techniques, 10. A machine learning predictive framework for diabetes management using blood parameters, 11. A combined neuro-fuzzy and Naive Bayes approach for swine flu disease prediction, 12. Enhancing decision-making in maternal public healthcare using a knowledge discovery-based predictive analytics framework, PART 4. Patient care and enhancements, 13. Enhancing patient care and treatment through explainable AI: A gap analysis, 14. Improved medical image captioning for chest X-rays using a hybrid VGG-ELECTRA model, 15. Diagnosing Parkinson's disease using a deep learning model based on electromyography sensors, 16. Enhancing heart disease prediction with Hybridized KNN-MOPSO algorithm
PART 1. Foundations of AI in healthcare, 1. Exploring deep learning approaches for cardiac arrhythmia diagnosis, 2. Neural networks and LDA-based machine learning framework for the early detection of breast cancer, 3. Advanced deep learning algorithms for early ocular disease detection using fundus images, PART 2. Disease detection and diagnosis, 4. A vision transformer-based approach for brain tumor detection, 5. Early detection of skin cancer through human-computer collaboration, 6. Improved mass detection in mammogram images with Dual Tree Complex Wavelet Transform and Fourier Descriptors, 7. A deep learning-based model for early detection of COVID-19 using chest X-ray images, 8. Detection of seizure activity in fMRI images using deep learning techniques, PART 3. Disease prediction and public health, 9. Improving prediction accuracy for neo-adjuvant chemotherapy response in breast cancer through 3D image segmentation and deep learning techniques, 10. A machine learning predictive framework for diabetes management using blood parameters, 11. A combined neuro-fuzzy and Naive Bayes approach for swine flu disease prediction, 12. Enhancing decision-making in maternal public healthcare using a knowledge discovery-based predictive analytics framework, PART 4. Patient care and enhancements, 13. Enhancing patient care and treatment through explainable AI: A gap analysis, 14. Improved medical image captioning for chest X-rays using a hybrid VGG-ELECTRA model, 15. Diagnosing Parkinson's disease using a deep learning model based on electromyography sensors, 16. Enhancing heart disease prediction with Hybridized KNN-MOPSO algorithm