Artificial Intelligence in Radiation Therapy (eBook, PDF)
First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
Redaktion: Nguyen, Dan; Jiang, Steve; Xing, Lei
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Artificial Intelligence in Radiation Therapy (eBook, PDF)
First International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings
Redaktion: Nguyen, Dan; Jiang, Steve; Xing, Lei
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
![](https://bilder.buecher.de/images/aktion/tolino/tolino-select-logo.png)
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.
The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 23.18MB
Andere Kunden interessierten sich auch für
- Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (eBook, PDF)53,95 €
- Simulation and Synthesis in Medical Imaging (eBook, PDF)40,95 €
- Computational Methods and Clinical Applications in Musculoskeletal Imaging (eBook, PDF)40,95 €
- Multiscale Multimodal Medical Imaging (eBook, PDF)44,95 €
- Biomedical Image Registration (eBook, PDF)57,95 €
- Head and Neck Tumor Segmentation (eBook, PDF)40,95 €
- -24%11Kidney and Kidney Tumor Segmentation (eBook, PDF)44,95 €
- -23%11
-
-
This book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019.
The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.
The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 172
- Erscheinungstermin: 10. Oktober 2019
- Englisch
- ISBN-13: 9783030324865
- Artikelnr.: 57898976
- Verlag: Springer International Publishing
- Seitenzahl: 172
- Erscheinungstermin: 10. Oktober 2019
- Englisch
- ISBN-13: 9783030324865
- Artikelnr.: 57898976
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy.- Feasibility of CT-only 3D dose prediction for VMAT prostate plans using deep learning.- Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency.- 4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network.- Toward markerless image-guided radiotherapy using deep learning for prostate cancer.- A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network.- A Novel Deep Learning Framework for Standardizing the Label of OARs in CT.- Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery.- Voxel-level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions.- Online Target Volume Estimation and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach.- One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning.- Unpaired Synthetic Image Generation in Radiology Using GANs.- Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study.- Individualized 3D Dose Distribution Prediction Using Deep Learning.- Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy.- Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma.- DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy.- UC-GAN for MR to CT Image Synthesis.- CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy.- Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.
Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy.- Feasibility of CT-only 3D dose prediction for VMAT prostate plans using deep learning.- Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency.- 4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network.- Toward markerless image-guided radiotherapy using deep learning for prostate cancer.- A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network.- A Novel Deep Learning Framework for Standardizing the Label of OARs in CT.- Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery.- Voxel-level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions.- Online Target Volume Estimation and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach.- One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning.- Unpaired Synthetic Image Generation in Radiology Using GANs.- Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study.- Individualized 3D Dose Distribution Prediction Using Deep Learning.- Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy.- Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma.- DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy.- UC-GAN for MR to CT Image Synthesis.- CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy.- Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.