Masanobu Taniguchi, Yoshihide Kakizawa
Asymptotic Theory of Statistical Inference for Time Series (eBook, PDF)
113,95 €
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
57 °P sammeln
113,95 €
Als Download kaufen
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
57 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
113,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
57 °P sammeln
Masanobu Taniguchi, Yoshihide Kakizawa
Asymptotic Theory of Statistical Inference for Time Series (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 43.35MB
Andere Kunden interessierten sich auch für
- Yury A. KutoyantsStatistical Inference for Ergodic Diffusion Processes (eBook, PDF)89,95 €
- Yu A. KutoyantsStatistical Inference for Spatial Poisson Processes (eBook, PDF)73,95 €
- -31%11Seminar on Stochastic Analysis, Random Fields and Applications V (eBook, PDF)73,95 €
- David J. OliveStatistical Theory and Inference (eBook, PDF)57,95 €
- I. V. BasawaAsymptotic Optimal Inference for Non-ergodic Models (eBook, PDF)73,95 €
- Dennis D. BoosEssential Statistical Inference (eBook, PDF)89,95 €
- Stefano M. IacusSimulation and Inference for Stochastic Differential Equations (eBook, PDF)89,95 €
-
-
-
The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 662
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461211624
- Artikelnr.: 44184946
- Verlag: Springer New York
- Seitenzahl: 662
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461211624
- Artikelnr.: 44184946
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Elements of Stochastic Processes.- 1.1 Introduction.- 1.2 Stochastic Processes.- 1.3 Limit Theorems.- Problems.- 2 Local Asymptotic Normality for Stochastic Processes.- 2.1 General Results for Local Asymptotic Normality.- 2.2 Local Asymptotic Normality for Linear Processes.- Problems.- 3 Asymptotic Theory of Estimation and Testing for Stochastic Processes.- 3.1 Asymptotic Theory of Estimation and Testing for Linear Processes.- 3.2 Asymptotic Theory for Nonlinear Stochastic Models.- 3.3 Asymptotic Theory for Continuous Time Processes.- Problems.- 4 Higher Order Asymptotic Theory for Stochastic Processes.- 4.1 Introduction to Higher Order Asymptotic Theory.- 4.2 Valid Asymptotic Expansions.- 4.3 Higher Order Asymptotic Estimation Theory for Discrete Time Processes in View of Statistical Differential Geometry.- 4.4 Higher Order Asymptotic Theory for Continuous Time Processes.- 4.5 Higher Order Asymptotic Theory for Testing Problems.- 4.6 Higher Order Asymptotic Theory for Normalizing Transformations.- 4.7 Generalization of LeCam's Third Lemma and Higher Order Asymptotics of Iterative Methods.- Problems.- 5 Asymptotic Theory for Long-Memory Processes.- 5.1 Some Elements of Long-Memory Processes.- 5.2 Limit Theorems for Fundamental Statistics.- 5.3 Estimation and Testing Theory for Long-Memory Processes.- 5.4 Regression Models with Long-Memory Disturbances.- 5.5 Semiparametric Analysis and the LAN Approach.- Problems.- 6 Statistical Analysis Based on Functionals of Spectra.- 6.1 Estimation of Nonlinear Functionals of Spectra.- 6.2 Application to Parameter Estimation for Stationary Processes.- 6.3 Asymptotically Efficient Nonparametric Estimation of Functionals of Spectra in Gaussian Stationary Processes.- 6.4 Robustness in the Frequency Domain Approach.- 6.5 NumericalExamples.- Problems.- 7 Discriminant Analysis for Stationary Time Series.- 7.1 Basic Formulation.- 7.2 Standard Methods for Gaussian Stationary Processes.- 7.3 Discriminant Analysis for Non-Gaussian Linear Processes.- 7.4 Nonparametric Approach for Discriminant Analysis.- 7.5 Parametric Approach for Discriminant Analysis.- 7.6 Derivation of Spectral Expressions to Divergence Measures Between Gaussian Stationary Processes.- 7.7 Miscellany.- Problems.- 8 Large Deviation Theory and Saddlepoint Approximation for Stochastic Processes.- 8.1 Large Deviation Theorem 538 8.2 Asymptotic Efficiency for Gaussian Stationary Processes:Large Deviation Approach.- 8.3 Large Deviation Results for an Ornstein-Uhlenbeck Process.- 8.4 Saddlepoint Approximations for Stochastic Processes.- Problems.- A.1 Mathematics.- A.2 Probability.- A.3 Statistics.
1 Elements of Stochastic Processes.- 1.1 Introduction.- 1.2 Stochastic Processes.- 1.3 Limit Theorems.- Problems.- 2 Local Asymptotic Normality for Stochastic Processes.- 2.1 General Results for Local Asymptotic Normality.- 2.2 Local Asymptotic Normality for Linear Processes.- Problems.- 3 Asymptotic Theory of Estimation and Testing for Stochastic Processes.- 3.1 Asymptotic Theory of Estimation and Testing for Linear Processes.- 3.2 Asymptotic Theory for Nonlinear Stochastic Models.- 3.3 Asymptotic Theory for Continuous Time Processes.- Problems.- 4 Higher Order Asymptotic Theory for Stochastic Processes.- 4.1 Introduction to Higher Order Asymptotic Theory.- 4.2 Valid Asymptotic Expansions.- 4.3 Higher Order Asymptotic Estimation Theory for Discrete Time Processes in View of Statistical Differential Geometry.- 4.4 Higher Order Asymptotic Theory for Continuous Time Processes.- 4.5 Higher Order Asymptotic Theory for Testing Problems.- 4.6 Higher Order Asymptotic Theory for Normalizing Transformations.- 4.7 Generalization of LeCam's Third Lemma and Higher Order Asymptotics of Iterative Methods.- Problems.- 5 Asymptotic Theory for Long-Memory Processes.- 5.1 Some Elements of Long-Memory Processes.- 5.2 Limit Theorems for Fundamental Statistics.- 5.3 Estimation and Testing Theory for Long-Memory Processes.- 5.4 Regression Models with Long-Memory Disturbances.- 5.5 Semiparametric Analysis and the LAN Approach.- Problems.- 6 Statistical Analysis Based on Functionals of Spectra.- 6.1 Estimation of Nonlinear Functionals of Spectra.- 6.2 Application to Parameter Estimation for Stationary Processes.- 6.3 Asymptotically Efficient Nonparametric Estimation of Functionals of Spectra in Gaussian Stationary Processes.- 6.4 Robustness in the Frequency Domain Approach.- 6.5 NumericalExamples.- Problems.- 7 Discriminant Analysis for Stationary Time Series.- 7.1 Basic Formulation.- 7.2 Standard Methods for Gaussian Stationary Processes.- 7.3 Discriminant Analysis for Non-Gaussian Linear Processes.- 7.4 Nonparametric Approach for Discriminant Analysis.- 7.5 Parametric Approach for Discriminant Analysis.- 7.6 Derivation of Spectral Expressions to Divergence Measures Between Gaussian Stationary Processes.- 7.7 Miscellany.- Problems.- 8 Large Deviation Theory and Saddlepoint Approximation for Stochastic Processes.- 8.1 Large Deviation Theorem 538 8.2 Asymptotic Efficiency for Gaussian Stationary Processes:Large Deviation Approach.- 8.3 Large Deviation Results for an Ornstein-Uhlenbeck Process.- 8.4 Saddlepoint Approximations for Stochastic Processes.- Problems.- A.1 Mathematics.- A.2 Probability.- A.3 Statistics.