124,99 €
124,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
124,99 €
124,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
124,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
124,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Unique overview of the recent synthetic methodologies of the atropisomeric molecules and their numerous practical applications
Atropisomerism in Asymmetric Organic Synthesis: Challenges and Applications presents new methodologies, strategies, unique catalysts, and solutions to challenges in the area of oxidative heterocoupling. After a general introduction for the concept of atropisomerism, this book focuses on the recent advances in the atroposelective synthesis of axially chiral compounds and how these advances had a significant impact on several applications in asymmetric catalysis…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 30.49MB
Produktbeschreibung
Unique overview of the recent synthetic methodologies of the atropisomeric molecules and their numerous practical applications

Atropisomerism in Asymmetric Organic Synthesis: Challenges and Applications presents new methodologies, strategies, unique catalysts, and solutions to challenges in the area of oxidative heterocoupling. After a general introduction for the concept of atropisomerism, this book focuses on the recent advances in the atroposelective synthesis of axially chiral compounds and how these advances had a significant impact on several applications in asymmetric catalysis and the synthesis of natural products.

The book covers the recent examples of metal-catalyzed (Cu, Fe, Ru, V, etc) and organocatalyzed atroposelective syntheses of axially chiral compounds using diverse approaches, including cross-coupling reactions, ring-opening reactions, formation of new aromatic rings, and desymmetrization via functional group transformation. The impact of these efficient strategies on various applications in asymmetric catalysis, total synthesis of natural products, synthesis of polycyclic heteroaromatics (PHAs), and the drug industry is also addressed.

Edited by two highly qualified academics, Atropisomerism in Asymmetric Organic Synthesis explores sample topics including:

  • Iron- and ruthenium-catalyzed atroposelective synthesis of axially chiral compounds and the catalytic applications of multinuclear zinc complexes with axially chirality
  • Vanadium-catalyzed atroposelective coupling of arenols and application in the synthesis of polycyclic heteroaromatics PHAs
  • Mechanisms of atroposelective Suzuki-Miyaura coupling towards axially chiral biaryls and organocatalytic enantioselective formation of atropisomers
  • Synthesis of atropisomers via enantioselective ring-opening reactions and the impact of axially chiral ligands and catalysts derived from atropisomeric binaphthyl structures
  • Binaphthyl-based chiral DMAP derivatives in enantioselective transformations and catalytic atroposelective oxidative coupling in natural product synthesis


Enabling readers to comprehensively understand the development history, research status, and potential of atropisomeric synthesis, Atropisomerism in Asymmetric Organic Synthesis is an essential, up-to-date reference for researchers and scientists in the field.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.

Autorenporträt
Shinobu Takizawa is Associate Professor at the Institute of Scientific and Industrial Research (SANKEN) and AI Research Center at Osaka University (Japan). He received his Ph.D. in chemistry at the Graduate School of Pharmaceutical Science, Osaka University in 2000. From 2006 to 2008 he did postdoctoral studies at The Scripps Research Institute (USA) with Professor Dale L. Boger. He received the Daiichi Pharmaceutical Co. Ltd. Award in Synthetic Organic Chemistry, Japan (2000), the Pharmaceutical Society of Japan Award for Young Scientists (2009), the Daiichi-Sankyo Co. Ltd. Award in Synthetic Organic Chemistry, Japan (2009), the Osaka University Presidential Award for Encouragement in Research (2015) and the Pharmaceutical Society of Japan Award for Divisional Scientific Promotion (2019). His current research interest focuses on developing sustainable synthetic reactions with machine learning optimization. He is the author of more than 125 articles. Mohamed Salem is a research associate at the Institute of Scientific and Industrial Research at Osaka University. He graduated from the Faculty of Pharmacy, Suez Canal University (Egypt) in 2017, and received his Ph.D. in chemistry at the Graduate School of Science, Osaka University in 2022 under the direction of Professor Hiroaki Sasai and Professor Takayoshi Suzuki. Mohamed was awarded the Japanese Government Scholarship (MEXT) in 2019. His current research interest is designing and synthesizing CPL-responsive SOMs using electrochemistry, machine-learning-assisted optimization of reaction parameters, and asymmetric catalysis.