This book includes eight chapters introducing some interesting works on the attention mechanism. Chapter 1 is a review of the attention mechanism used in the deep learning area, while Chapter 2 and Chapter 3 present two models that integrate the attention mechanism into gated recurrent units (GRUs) and long short-term memory (LSTM), respectively, making them pay attention to important information in the sequences. Chapter 4 designs a multi-attention fusion mechanism and uses it for industrial surface defect detection. Chapter 5 enhances Transformer for object detection applications. Moreover, Chapter 6 proposes a dual-path architecture called dual-path mutual attention network (DPMAN) for medical image classification, and Chapter 7 proposes a novel graph model called attention-gated graph neural network (AGGNN) for text classification. In addition, Chapter 8 combines the generative adversarial networks (GANs), LSTM, and an attention mechanism to build a generative model for stock price prediction.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.