18,99 €
Statt 27,95 €**
18,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
18,99 €
Statt 27,95 €**
18,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 27,95 €****
18,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 27,95 €****
18,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Bachelorarbeit aus dem Jahr 2013 im Fachbereich Didaktik - Mathematik, Note: 1,0, Technische Universität Carolo-Wilhelmina zu Braunschweig, Sprache: Deutsch, Abstract: In der vorliegenden Bachelorarbeit wurden Summenmuster in der Folge der natürlichen Zahlen untersucht. Mithilfe eines Computerprogrammes, das im ersten Teil dieser Bachelorarbeit dargestellt wird, wurden sämtliche Darstellungsmöglichkeiten natürlicher Zahlen, als Summe von aufeinanderfolgenden natürlichen Zahlen, für ein vorher festgelegtes Intervall ermittelt. Bei der Auswertung, der durch das Computerprogramm gewonnenen…mehr

Produktbeschreibung
Bachelorarbeit aus dem Jahr 2013 im Fachbereich Didaktik - Mathematik, Note: 1,0, Technische Universität Carolo-Wilhelmina zu Braunschweig, Sprache: Deutsch, Abstract: In der vorliegenden Bachelorarbeit wurden Summenmuster in der Folge der natürlichen Zahlen untersucht. Mithilfe eines Computerprogrammes, das im ersten Teil dieser Bachelorarbeit dargestellt wird, wurden sämtliche Darstellungsmöglichkeiten natürlicher Zahlen, als Summe von aufeinanderfolgenden natürlichen Zahlen, für ein vorher festgelegtes Intervall ermittelt. Bei der Auswertung, der durch das Computerprogramm gewonnenen Datenblätter, wurden ausschließlich solche Sequenzen betrachtet, die sich in aufeinanderfolgende summengleiche Abschnitte halbieren lassen. Dabei wurden unterschiedliche Variationen dieser Sequenzen untersucht, sowie Muster und Ähnlichkeiten gefunden, deren Beweis und Verallgemeinerung Gegenstand dieser Bachelorarbeit sein wird. Ihren Ursprung hat die Thematik in der folgenden Knobelaufgabe, die der indische Mathematiker Srinivasa Ramanujan (1887-1920), der für seine außergewöhnlichen Fähigkeiten im Umgang mit zahlentheoretischen Problemen bekannt war, ohne zu zögern mithilfe von Kettenbrüchen löste: "Die durchnummerierten Häuser eines Straßendorfes stehen alle auf einer Seite. Jemand wohnt in einem Haus mit einer Hausnummer, für welches die Summe der Hausnummern vor und hinter diesem Haus gleich ist. Wie viele Häuser hat das Dorf? Welche Hausnummer ist dies?".

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.