Backpropagation (eBook, PDF)
Theory, Architectures, and Applications
Redaktion: Chauvin, Yves; Rumelhart, David E.
100,95 €
100,95 €
inkl. MwSt.
Sofort per Download lieferbar
50 °P sammeln
100,95 €
Als Download kaufen
100,95 €
inkl. MwSt.
Sofort per Download lieferbar
50 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
100,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
50 °P sammeln
Backpropagation (eBook, PDF)
Theory, Architectures, and Applications
Redaktion: Chauvin, Yves; Rumelhart, David E.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 14.04MB
Composed of three sections, this book presents the most popular training algorithm for neural networks: backpropagation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 576
- Erscheinungstermin: 1. Februar 2013
- Englisch
- ISBN-13: 9781134775743
- Artikelnr.: 38402946
- Verlag: Taylor & Francis
- Seitenzahl: 576
- Erscheinungstermin: 1. Februar 2013
- Englisch
- ISBN-13: 9781134775743
- Artikelnr.: 38402946
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Yves Chauvin, David E. Rumelhart
Contents: D.E. Rumelhart
R. Durbin
R. Golden
Y. Chauvin
Backpropagation: The Basic Theory. A. Waibel
T. Hanazawa
G. Hinton
K. Shikano
K.J. Lang
Phoneme Recognition Using Time-Delay Neural Networks. C. Schley
Y. Chauvin
V. Henkle
Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda
Recurrent Backpropagation Networks. M.C. Mozer
A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen
B. Widrow
Nonlinear Control with Neural Networks. M.I. Jordan
D.E. Rumelhart
Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson
Backpropagation: Some Comments and Variations. A. Cleeremans
D. Servan-Schreiber
J.L. McClelland
Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker
G.E. Hinton
Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach
M.C. Mozer
Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi
Y. Chauvin
K. Hornik
Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams
D. Zipser
Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi
Y. Chauvin
When Neural Networks Play Sherlock Homes. P. Baldi
Gradient Descent Learning Algorithms: A Unified Perspective.
R. Durbin
R. Golden
Y. Chauvin
Backpropagation: The Basic Theory. A. Waibel
T. Hanazawa
G. Hinton
K. Shikano
K.J. Lang
Phoneme Recognition Using Time-Delay Neural Networks. C. Schley
Y. Chauvin
V. Henkle
Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda
Recurrent Backpropagation Networks. M.C. Mozer
A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen
B. Widrow
Nonlinear Control with Neural Networks. M.I. Jordan
D.E. Rumelhart
Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson
Backpropagation: Some Comments and Variations. A. Cleeremans
D. Servan-Schreiber
J.L. McClelland
Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker
G.E. Hinton
Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach
M.C. Mozer
Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi
Y. Chauvin
K. Hornik
Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams
D. Zipser
Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi
Y. Chauvin
When Neural Networks Play Sherlock Homes. P. Baldi
Gradient Descent Learning Algorithms: A Unified Perspective.
Contents: D.E. Rumelhart
R. Durbin
R. Golden
Y. Chauvin
Backpropagation: The Basic Theory. A. Waibel
T. Hanazawa
G. Hinton
K. Shikano
K.J. Lang
Phoneme Recognition Using Time-Delay Neural Networks. C. Schley
Y. Chauvin
V. Henkle
Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda
Recurrent Backpropagation Networks. M.C. Mozer
A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen
B. Widrow
Nonlinear Control with Neural Networks. M.I. Jordan
D.E. Rumelhart
Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson
Backpropagation: Some Comments and Variations. A. Cleeremans
D. Servan-Schreiber
J.L. McClelland
Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker
G.E. Hinton
Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach
M.C. Mozer
Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi
Y. Chauvin
K. Hornik
Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams
D. Zipser
Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi
Y. Chauvin
When Neural Networks Play Sherlock Homes. P. Baldi
Gradient Descent Learning Algorithms: A Unified Perspective.
R. Durbin
R. Golden
Y. Chauvin
Backpropagation: The Basic Theory. A. Waibel
T. Hanazawa
G. Hinton
K. Shikano
K.J. Lang
Phoneme Recognition Using Time-Delay Neural Networks. C. Schley
Y. Chauvin
V. Henkle
Automated Aircraft Flare and Touchdown Control Using Neural Networks. F.J. Pineda
Recurrent Backpropagation Networks. M.C. Mozer
A Focused Backpropagation Algorithm for Temporal Pattern Recognition. D.H. Nguyen
B. Widrow
Nonlinear Control with Neural Networks. M.I. Jordan
D.E. Rumelhart
Forward Models: Supervised Learning with a Distal Teacher. S.J. Hanson
Backpropagation: Some Comments and Variations. A. Cleeremans
D. Servan-Schreiber
J.L. McClelland
Graded State Machines: The Representation of Temporal Contingencies in Feedback Networks. S. Becker
G.E. Hinton
Spatial Coherence as an Internal Teacher for a Neural Network. J.R. Bachrach
M.C. Mozer
Connectionist Modeling and Control of Finite State Systems Given Partial State Information. P. Baldi
Y. Chauvin
K. Hornik
Backpropagation and Unsupervised Learning in Linear Networks. R.J. Williams
D. Zipser
Gradient-Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. P. Baldi
Y. Chauvin
When Neural Networks Play Sherlock Homes. P. Baldi
Gradient Descent Learning Algorithms: A Unified Perspective.