65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
65,95 €
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
Als Download kaufen
65,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
33 °P sammeln
Jetzt verschenken
65,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
33 °P sammeln
  • Format: PDF

The book covers the structure and properties of nanoscale materials routinely used in nanotechnology-based research. Included is a description of nanoscale transistors and the processes used to fabricate the devices. It presents research involving the use of carbon nanotubes, graphene, and molecules to create non-silicon based electronic devices.

Produktbeschreibung
The book covers the structure and properties of nanoscale materials routinely used in nanotechnology-based research. Included is a description of nanoscale transistors and the processes used to fabricate the devices. It presents research involving the use of carbon nanotubes, graphene, and molecules to create non-silicon based electronic devices.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Wesley C. Sanders is currently an assistant professor at Salt Lake Community College. He teaches courses in nanotechnology, materials science, chemistry, and microscopy. While serving as an assistant professor, he has published articles in the Journal of Chemical Education describing undergraduate labs for use in introductory, nanotechnology courses. He earned a BSEd. in science education from Western Carolina University (1999). Later, he earned a M.S. in chemistry from the University of North Carolina at Charlotte (2005) and a Ph.D. in chemistry from Virginia Tech (2008). His initial experiences with nanotechnology occurred while studying self-assembled monolayers on gold with a scanning electrochemical microscope as a doctoral student at Virginia Tech. After receiving his Ph.D., he examined bacterial nanofilaments with an atomic force microscope while working as a postdoctoral researcher at the U.S. Naval Research Lab in Washington D.C.