35,95 €
35,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
18 °P sammeln
35,95 €
35,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
18 °P sammeln
Als Download kaufen
35,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
18 °P sammeln
Jetzt verschenken
35,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
18 °P sammeln
  • Format: PDF

Bayesian Econometric Methods examines principles of Bayesian inference by posing a series of theoretical and applied questions and providing detailed solutions to those questions. This second edition adds extensive coverage of models popular in finance and macroeconomics, including state space and unobserved components models, stochastic volatility models, ARCH, GARCH, and vector autoregressive models. The authors have also added many new exercises related to Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods. The text includes regression-based and hierarchical specifications, models…mehr

  • Geräte: PC
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 4.14MB
  • FamilySharing(5)
Produktbeschreibung
Bayesian Econometric Methods examines principles of Bayesian inference by posing a series of theoretical and applied questions and providing detailed solutions to those questions. This second edition adds extensive coverage of models popular in finance and macroeconomics, including state space and unobserved components models, stochastic volatility models, ARCH, GARCH, and vector autoregressive models. The authors have also added many new exercises related to Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods. The text includes regression-based and hierarchical specifications, models based upon latent variable representations, and mixture and time series specifications. MCMC methods are discussed and illustrated in detail - from introductory applications to those at the current research frontier - and MATLAB(R) computer programs are provided on the website accompanying the text. Suitable for graduate study in economics, the text should also be of interest to students studying statistics, finance, marketing, and agricultural economics.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Joshua Chan is Professor of Economics at Purdue University, Indiana. He is interested in building flexible models for large datasets and developing efficient estimation methods. His favorite applications include trend inflation estimation and macroeconomic forecasting. He has co-authored the textbook Statistical Modeling and Computation (2013).
Rezensionen
'This volume invigorates the understanding and application of Bayesian econometrics with a uniquely constructive, hands-on approach. By moving seamlessly between theory, methods, and applications, it builds understanding and skills that will serve the novice Bayesian econometrician well, and synthesizes the subject for experienced Bayesian practitioners.' John Geweke, Charles R. Nelson Endowed Professor in Economics, University of Washington