75,95 €
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
38 °P sammeln
75,95 €
75,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
38 °P sammeln
Als Download kaufen
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
38 °P sammeln
Jetzt verschenken
75,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
38 °P sammeln
  • Format: ePub

This book is devoted to a special class of engineering problems called Bayesian inverse problems . These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them.

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 15.69MB
Produktbeschreibung
This book is devoted to a special class of engineering problems called Bayesian inverse problems. These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Juan Chiachío-Ruano is an Associate Professor of Structural Engineering at University of Granada (Spain), and a researcher at the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). He has devoted his research career to the study and development of Bayesian methods in application to a wide range of Mechanical and Structural Engineering problems. Prior to joining University of Granada, he has developed a significant international research career working at top academic institutions in the UK and the USA. Manuel Chiachío-Ruano holds a PhD in Structural Engineering (2014) by the University of Granada (Spain). Currently, he is Associate Professor and Head of the Intelligent Prognostics and Cyber-physical Structural Systems Laboratory (iPHMLab) at the University of Granada. He has developed a significant part of his research in collaboration with the California Institute of Technology (USA), the University of Nottingham (UK) and NASA Ames Research Center (USA), during his stays at these institutions. Shankar Sankararaman received his PhD in Civil Engineering from Vanderbilt University, Nashville, TN, USA, in 2012. Soon after, he joined NASA Ames Research Center, where he developed Machine Learning algorithms and Bayesian methods for system health monitoring, prognostics, decision-making, and uncertainty management. Dr Sankararaman has co-authored a book on prognostics and published over 100 technical articles in international journals and conferences. Presently, Shankar is a scientist at Intuit AI, where he focuses on implementing cutting edge research in products and solutions for Intuit's customers.