Bayesian Inverse Problems (eBook, PDF)
Fundamentals and Engineering Applications
Redaktion: Chiachio-Ruano, Juan; Sankararaman, Shankar; Chiachio-Ruano, Manuel
75,95 €
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
75,95 €
Als Download kaufen
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
38 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
75,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
38 °P sammeln
Bayesian Inverse Problems (eBook, PDF)
Fundamentals and Engineering Applications
Redaktion: Chiachio-Ruano, Juan; Sankararaman, Shankar; Chiachio-Ruano, Manuel
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is devoted to a special class of engineering problems called Bayesian inverse problems . These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 11.53MB
Andere Kunden interessierten sich auch für
- William M. MendenhallStatistics for Engineering and the Sciences Student Solutions Manual (eBook, PDF)39,95 €
- Necip DoganaksoyAchieving Product Reliability (eBook, PDF)34,95 €
- William M. MendenhallStatistics for Engineering and the Sciences (eBook, PDF)89,95 €
- Randal DoucNonlinear Time Series (eBook, PDF)115,95 €
- Mark E. TuttleStructural Analysis of Polymeric Composite Materials (eBook, PDF)61,95 €
- N. BalakrishnanCRC Handbook of Tables for Order Statistics from Inverse Gaussian Distributions with Applications (eBook, PDF)61,95 €
- Daniel GrahamInvitation to Protein Sequence Analysis Through Probability and Information (eBook, PDF)46,95 €
-
-
-
This book is devoted to a special class of engineering problems called Bayesian inverse problems. These problems comprise not only the probabilistic Bayesian formulation of engineering problems, but also the associated stochastic simulation methods needed to solve them.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 10. November 2021
- Englisch
- ISBN-13: 9781351869669
- Artikelnr.: 62420132
- Verlag: Taylor & Francis
- Seitenzahl: 248
- Erscheinungstermin: 10. November 2021
- Englisch
- ISBN-13: 9781351869669
- Artikelnr.: 62420132
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Juan Chiachío-Ruano is an Associate Professor of Structural Engineering at University of Granada (Spain), and a researcher at the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI). He has devoted his research career to the study and development of Bayesian methods in application to a wide range of Mechanical and Structural Engineering problems. Prior to joining University of Granada, he has developed a significant international research career working at top academic institutions in the UK and the USA. Manuel Chiachío-Ruano holds a PhD in Structural Engineering (2014) by the University of Granada (Spain). Currently, he is Associate Professor and Head of the Intelligent Prognostics and Cyber-physical Structural Systems Laboratory (iPHMLab) at the University of Granada. He has developed a significant part of his research in collaboration with the California Institute of Technology (USA), the University of Nottingham (UK) and NASA Ames Research Center (USA), during his stays at these institutions. Shankar Sankararaman received his PhD in Civil Engineering from Vanderbilt University, Nashville, TN, USA, in 2012. Soon after, he joined NASA Ames Research Center, where he developed Machine Learning algorithms and Bayesian methods for system health monitoring, prognostics, decision-making, and uncertainty management. Dr Sankararaman has co-authored a book on prognostics and published over 100 technical articles in international journals and conferences. Presently, Shankar is a scientist at Intuit AI, where he focuses on implementing cutting edge research in products and solutions for Intuit's customers.
Part 1 Fundamentals 1. Introduction to Bayesian Inverse Problems 2. Solving
Inverse Problems by Approximate Bayesian Computation 3. Fundamentals of
Sequential System Monitoring and Prognostics Methods 4. Parameter
Identification Based on Conditional Expectation Part 2 Engineering
Applications 5. Sparse Bayesian Learning and its Application in Bayesian
System Identification 6. Ultrasonic Guided-waves Based Bayesian Damage
Localisation and Optimal Sensor Configuration 7. Fast Bayesian Approach for
Stochastic Model Updating using Modal Information from Multiple Setups 8. A
Worked-out Example of Surrogate-based Bayesian Parameter and Field
Identification Methods
Inverse Problems by Approximate Bayesian Computation 3. Fundamentals of
Sequential System Monitoring and Prognostics Methods 4. Parameter
Identification Based on Conditional Expectation Part 2 Engineering
Applications 5. Sparse Bayesian Learning and its Application in Bayesian
System Identification 6. Ultrasonic Guided-waves Based Bayesian Damage
Localisation and Optimal Sensor Configuration 7. Fast Bayesian Approach for
Stochastic Model Updating using Modal Information from Multiple Setups 8. A
Worked-out Example of Surrogate-based Bayesian Parameter and Field
Identification Methods
Part 1 Fundamentals 1. Introduction to Bayesian Inverse Problems 2. Solving
Inverse Problems by Approximate Bayesian Computation 3. Fundamentals of
Sequential System Monitoring and Prognostics Methods 4. Parameter
Identification Based on Conditional Expectation Part 2 Engineering
Applications 5. Sparse Bayesian Learning and its Application in Bayesian
System Identification 6. Ultrasonic Guided-waves Based Bayesian Damage
Localisation and Optimal Sensor Configuration 7. Fast Bayesian Approach for
Stochastic Model Updating using Modal Information from Multiple Setups 8. A
Worked-out Example of Surrogate-based Bayesian Parameter and Field
Identification Methods
Inverse Problems by Approximate Bayesian Computation 3. Fundamentals of
Sequential System Monitoring and Prognostics Methods 4. Parameter
Identification Based on Conditional Expectation Part 2 Engineering
Applications 5. Sparse Bayesian Learning and its Application in Bayesian
System Identification 6. Ultrasonic Guided-waves Based Bayesian Damage
Localisation and Optimal Sensor Configuration 7. Fast Bayesian Approach for
Stochastic Model Updating using Modal Information from Multiple Setups 8. A
Worked-out Example of Surrogate-based Bayesian Parameter and Field
Identification Methods