Die Anwendung der Laplace-Transformation in den Naturwissenschaften und der Technik gewinnt ständig an Bedeutung. Dies führt zwangsläufig dazu, daß diese Methode in die Stoffpläne für Mathematik der meisten Fachrichtungen an Technischen Hochschulen und Fachhochschulen aufgenommen werden wird. Im Hinblick auf ihre Verwendung in anderen Fächern, erscheint es sinnvoll, mit dem Studium möglichst früh zu beginnen, spätestens jedoch im dritten Semester. Dies wiederum bedingt, daß nur Kenntnisse vorausgesetzt werden können, die im ersten und zweiten Semester vermittelt wurden. Unter diesem Gesichtspunkt ist dieses Arbeits- und übungsbuch entstanden. Es soll dem Studenten vom dritten Semester aufwärts ermöglichen, so weit in die Theorie und Praxis der Laplace-Transformation vorzudringen, daß er gewöhnliche Differentialgleichungen mit konstanten Koeffizienten und Differentialgleichungssysteme, wie sie bei der Behandlung von Schwingungsproblemen auftreten, selbständig lösen kann. Darüberhinaus soll der Stu dent in die Lage versetzt werden, mit fortschreitender Kenntnis in der Mathematik, weiter führende Werke über die Theorie der Laplace-Transformation zu lesen. Das Buch ist folgendermaßen aufgebaut: Im ersten Kapitel werden in zahlreichen Beispielen Funktionen in den Bildraum transfor miert, um den Leser mit dem Umgang mit Laplace -Transformierten vertraut zu machen. Im zweiten Kapitel werden die Eigenschaften der Laplace-Transformation untersucht. Im dritten Kapitel wird die Laplace-Transformation zur Lösung von Differentialgleichun gen benutzt. Im vierten Kapitel steht die Anwendung auf technische Probleme im Vordergrund. Alle Beispiele im Text sind ausflihrlich durchgerechnet. Am Schluß jeden Kapitels sind Aufgaben gestellt, deren Lösungen im Anhang angegeben werden, so daß der Leser über prüfen kann, ob er den Inhalt des Kapitels verstanden hat.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.