Belief Functions: Theory and Applications (eBook, PDF)
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Redaktion: Bi, Yaxin; Denoeux, Thierry; Jousselme, Anne-Laure
Alle Infos zum eBook verschenken
Belief Functions: Theory and Applications (eBook, PDF)
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Redaktion: Bi, Yaxin; Denoeux, Thierry; Jousselme, Anne-Laure
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2-4, 2024.
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.44MB
- Belief Functions: Theory and Applications (eBook, PDF)53,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Belief Functions: Theory and Applications (eBook, PDF)161,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Wei LiR-CALCULUS: A Logic of Belief Revision (eBook, PDF)73,95 €
- Federica CavicchioEmotion Detection in Natural Language Processing (eBook, PDF)23,95 €
-
-
-
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Springer International Publishing
- Seitenzahl: 294
- Erscheinungstermin: 19. August 2024
- Englisch
- ISBN-13: 9783031679773
- Artikelnr.: 72243488
- Verlag: Springer International Publishing
- Seitenzahl: 294
- Erscheinungstermin: 19. August 2024
- Englisch
- ISBN-13: 9783031679773
- Artikelnr.: 72243488
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.