Belief Functions: Theory and Applications (eBook, PDF)
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Redaktion: Bi, Yaxin; Denoeux, Thierry; Jousselme, Anne-Laure
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
Belief Functions: Theory and Applications (eBook, PDF)
8th International Conference, BELIEF 2024, Belfast, UK, September 2-4, 2024, Proceedings
Redaktion: Bi, Yaxin; Denoeux, Thierry; Jousselme, Anne-Laure
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2-4, 2024.
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.44MB
Andere Kunden interessierten sich auch für
- Belief Functions: Theory and Applications (eBook, PDF)53,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Belief Functions: Theory and Applications (eBook, PDF)161,95 €
- Belief Functions: Theory and Applications (eBook, PDF)40,95 €
- Foundations of Information and Knowledge Systems (eBook, PDF)57,95 €
- Federica CavicchioEmotion Detection in Natural Language Processing (eBook, PDF)23,95 €
-
-
-
This book constitutes the refereed proceedings of the 8th International Conference on Belief Functions, BELIEF 2024, held in Belfast, UK, in September 2-4, 2024.
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
The 30 full papers presented in this book were carefully selected and reviewed from 36 submissions. The papers cover a wide range on theoretical aspects on Machine learning; Statistical inference; Information fusion and optimization; Measures of uncertainty, conflict and distances; Continuous belief functions, logics, computation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Switzerland
- Seitenzahl: 294
- Erscheinungstermin: 19. August 2024
- Englisch
- ISBN-13: 9783031679773
- Artikelnr.: 72243488
- Verlag: Springer Nature Switzerland
- Seitenzahl: 294
- Erscheinungstermin: 19. August 2024
- Englisch
- ISBN-13: 9783031679773
- Artikelnr.: 72243488
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
.- Machine learning.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.
.- Machine learning.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.
.- Deep evidential clustering of images.
.- Incremental Belief-peaks Evidential Clustering.
.- Imprecise Deep Networks for Uncertain Image Classification.
.- Dempster-Shafer Credal Probabilistic Circuits.
.- Uncertainty quantification in regression neural networks using likelihood-based belief functions.
.- An evidential time-to-event prediction model based on Gaussian random fuzzy numbers.
.- Object Hallucination Detection in Large Vision Language Models via Evidential Conflict.
.- Multi-oversampling with evidence fusion for imbalanced data classification.
.- An Evidence-based Framework For Heterogeneous Electronic Health Records: A Case Study In Mortality Prediction.
.- Conflict Management in a Distance to Prototype-Based Evidential Deep Learning.
.- A Novel Privacy Preserving Framework for Training Dempster-Shafer Theory-based Evidential Deep Neural Network.
.- Statistical inference.
.- Large-sample theory for inferential models: A possibilistic Bernstein-von Mises theorem.
.- Variational approximations of possibilistic inferential models.
.- Decision theory via model-free generalized fiducial inference.
.- Which statistical hypotheses are afflicted with false confidence?.
.- Algebraic expression for the relative likelihood-based evidential prediction of an ordinal variable.
.- Information fusion and optimization.
.- Why Combining Belief Functions on Quantum Circuits?.
.- SHADED: Shapley Value-based Deceptive Evidence Detection in Belief Functions.
.- A Novel Optimization-Based Combination Rule for Dempster-Shafer Theory.
.- Fusing independent inferential models in a black-box manner.
.- Optimization under Severe Uncertainty: a Generalized Minimax Regret Approach for Problems with Linear Objectives.
.- Measures of uncertainty, conflict and distances.
.- A mean distance between elements of same class for rich labels.
.- Threshold Functions and Operations in the Theory of Evidence.
.- Mutual Information and Kullback-Leibler Divergence in the Dempster-Shafer Theory.
.- An OWA-based Distance Measure for Ordered Frames of Discernment.
.- Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks using Belief Functions.
.- Continuous belief functions, logics, computation.
.- Gamma Belief Functions.
.- Combination of Dependent Gaussian Random Fuzzy Numbers.
.- A 3-valued Logical Foundation for Evidential Reasoning.
.- Accelerated Dempster Shafer using Tensor Train Representation.