Big Data Analytics for Internet of Things (eBook, ePUB)
Redaktion: Saleem, Tausifa Jan; Chishti, Mohammad Ahsan
Alle Infos zum eBook verschenken
Big Data Analytics for Internet of Things (eBook, ePUB)
Redaktion: Saleem, Tausifa Jan; Chishti, Mohammad Ahsan
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
BIG DATA ANALYTICS FOR INTERNET OF THINGS Discover the latest developments in IoT Big Data with a new resource from established and emerging leaders in the field Big Data Analytics for Internet of Things delivers a comprehensive overview of all aspects of big data analytics in Internet of Things (IoT) systems. The book includes discussions of the enabling technologies of IoT data analytics, types of IoT data analytics, challenges in IoT data analytics, demand for IoT data analytics, computing platforms, analytical tools, privacy, and security. The distinguished editors have included resources…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 27.06MB
- Data Analytics (eBook, ePUB)39,95 €
- Analytic Methods in Systems and Software Testing (eBook, ePUB)68,99 €
- Mark van der LooStatistical Data Cleaning with Applications in R (eBook, ePUB)71,99 €
- Recent Advances in Hybrid Metaheuristics for Data Clustering (eBook, ePUB)114,99 €
- Robert CarverPreparing Data for Analysis with JMP (eBook, ePUB)21,95 €
- Hui LinPractitioner's Guide to Data Science (eBook, ePUB)57,95 €
- Intelligent Modeling, Prediction, and Diagnosis from Epidemiological Data (eBook, ePUB)58,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 400
- Erscheinungstermin: 29. März 2021
- Englisch
- ISBN-13: 9781119740773
- Artikelnr.: 61441035
- Verlag: John Wiley & Sons
- Seitenzahl: 400
- Erscheinungstermin: 29. März 2021
- Englisch
- ISBN-13: 9781119740773
- Artikelnr.: 61441035
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
List of Abbreviations xix
1 Big Data Analytics for the Internet of Things: An Overview 1
Tausifa Jan Saleem and Mohammad Ahsan Chishti
2 Data, Analytics and Interoperability Between Systems (IoT) is Incongruous
with the Economics of Technology: Evolution of Porous Pareto Partition (P3)
7
Shoumen Palit Austin Datta, Tausifa Jan Saleem, Molood Barati, María
Victoria López López, Marie-Laure Furgala, Diana C. Vanegas, Gérald
Santucci, Pramod P. Khargonekar, and Eric S. McLamore
2.1 Context 8
2.2 Models in the Background 12
2.3 Problem Space: Are We Asking the Correct Questions? 14
2.4 Solutions Approach: The Elusive Quest to Build Bridges Between Data and
Decisions 15
2.5 Avoid This Space: The Deception Space 17
2.6 Explore the Solution Space: Necessary to Ask Questions That May Not
Have Answers, Yet 17
2.7 Solution Economy: Will We Ever Get There? 19
2.8 Is This Faux Naïveté in Its Purest Distillate? 21
2.9 Reality Check: Data Fusion 22
2.10 "Double A" Perspective of Data and Tools vs. The Hypothetical Porous
Pareto (80/20) Partition 28
2.11 Conundrums 29
2.12 Stigma of Partition vs. Astigmatism of Vision 38
2.13 The Illusion of Data, Delusion of Big Data, and the Absence of
Intelligence in AI 40
2.14 In Service of Society 50
2.15 Data Science in Service of Society: Knowledge and Performance from
PEAS 52
2.16 Temporary Conclusion 60
Acknowledgements 63
References 63
3 Machine Learning Techniques for IoT Data Analytics 89
Nailah Afshan and Ranjeet Kumar Rout
3.1 Introduction 89
3.2 Taxonomy of Machine Learning Techniques 94
3.2.1 Supervised ML Algorithm 95
3.2.1.1 Classification 96
3.2.1.2 Regression Analysis 98
3.2.1.3 Classification and Regression Tasks 99
3.2.2 Unsupervised Machine Learning Algorithms 103
3.2.2.1 Clustering 103
3.2.2.2 Feature Extraction 106
3.2.3 Conclusion 107
References 107
4 IoT Data Analytics Using Cloud Computing 115
Anjum Sheikh, Sunil Kumar, and Asha Ambhaikar
4.1 Introduction 115
4.2 IoT Data Analytics 117
4.2.1 Process of IoT Analytics 117
4.2.2 Types of Analytics 118
4.3 Cloud Computing for IoT 118
4.3.1 Deployment Models for Cloud 120
4.3.1.1 Private Cloud 120
4.3.1.2 Public Cloud 120
4.3.1.3 Hybrid Cloud 121
4.3.1.4 Community Cloud 121
4.3.2 Service Models for Cloud Computing 122
4.3.2.1 Software as a Service (SaaS) 122
4.3.2.2 Platform as a Service (PaaS) 122
4.3.2.3 Infrastructure as a Service (IaaS) 122
4.3.3 Data Analytics on Cloud 123
4.4 Cloud-Based IoT Data Analytics Platform 123
4.4.1 Atos Codex 125
4.4.2 AWS IoT 125
4.4.3 IBM Watson IoT 126
4.4.4 Hitachi Vantara Pentaho, Lumada 127
4.4.5 Microsoft Azure IoT 128
4.4.6 Oracle IoT Cloud Services 129
4.5 Machine Learning for IoT Analytics in Cloud 132
4.5.1 ML Algorithms for Data Analytics 132
4.5.2 Types of Predictions Supported by ML and Cloud 136
4.6 Challenges for Analytics Using Cloud 137
4.7 Conclusion 139
References 139
5 Deep Learning Architectures for IoT Data Analytics 143
Snowber Mushtaq and Omkar Singh
5.1 Introduction 143
5.1.1 Types of Learning Algorithms 146
5.1.1.1 Supervised Learning 146
5.1.1.2 Unsupervised Learning 146
5.1.1.3 Semi-Supervised Learning 146
5.1.1.4 Reinforcement Learning 146
5.1.2 Steps Involved in Solving a Problem 146
5.1.2.1 Basic Terminology 147
5.1.2.2 Training Process 147
5.1.3 Modeling in Data Science 147
5.1.3.1 Generative 148
5.1.3.2 Discriminative 148
5.1.4 Why DL and IoT? 148
5.2 DL Architectures 149
5.2.1 Restricted Boltzmann Machine 149
5.2.1.1 Training Boltzmann Machine 150
5.2.1.2 Applications of RBM 151
5.2.2 Deep Belief Networks (DBN) 151
5.2.2.1 Training DBN 152
5.2.2.2 Applications of DBN 153
5.2.3 Autoencoders 153
5.2.3.1 Training of AE 153
5.2.3.2 Applications of AE 154
5.2.4 Convolutional Neural Networks (CNN) 154
5.2.4.1 Layers of CNN 155
5.2.4.2 Activation Functions Used in CNN 156
5.2.4.3 Applications of CNN 158
5.2.5 Generative Adversarial Network (GANs) 158
5.2.5.1 Training of GANs 158
5.2.5.2 Variants of GANs 159
5.2.5.3 Applications of GANs 159
5.2.6 Recurrent Neural Networks (RNN) 159
5.2.6.1 Training of RNN 160
5.2.6.2 Applications of RNN 161
5.2.7 Long Short-Term Memory (LSTM) 161
5.2.7.1 Training of LSTM 161
5.2.7.2 Applications of LSTM 162
5.3 Conclusion 162
References 163
6 Adding Personal Touches to IoT: A User-Centric IoT Architecture 167
Sarabjeet Kaur Kochhar
6.1 Introduction 167
6.2 Enabling Technologies for BDA of IoT Systems 169
6.3 Personalizing the IoT 171
6.3.1 Personalization for Business 172
6.3.2 Personalization for Marketing 172
6.3.3 Personalization for Product Improvement and Service Optimization 173
6.3.4 Personalization for Automated Recommendations 174
6.3.5 Personalization for Improved User Experience 174
6.4 Related Work 175
6.5 User Sensitized IoT Architecture 176
6.6 The Tweaked Data Layer 178
6.7 The Personalization Layer 180
6.7.1 The Characterization Engine 180
6.7.2 The Sentiment Analyzer 182
6.8 Concerns and Future Directions 183
6.9 Conclusions 184
References 185
7 Smart Cities and the Internet of Things 187
Hemant Garg, Sushil Gupta, and Basant Garg
7.1 Introduction 187
7.2 Development of Smart Cities and the IoT 188
7.3 The Combination of the IoT with Development of City Architecture to
Form Smart Cities 189
7.3.1 Unification of the IoT 190
7.3.2 Security of Smart Cities 190
7.3.3 Management of Water and Related Amenities 190
7.3.4 Power Distribution and Management 191
7.3.5 Revenue Collection and Administration 191
7.3.6 Management of City Assets and Human Resources 192
7.3.7 Environmental Pollution Management 192
7.4 How Future Smart Cities Can Improve Their Utilization of the Internet
of All Things, with Examples 193
7.5 Conclusion 194
References 195
8 A Roadmap for Application of IoT-Generated Big Data in Environmental
Sustainability 197
Ankur Kashyap
8.1 Background and Motivation 197
8.2 Execution of the Study 198
8.2.1 Role of Big Data in Sustainability 198
8.2.2 Present Status and Future Possibilities of IoT in Environmental
Sustainability 199
8.3 Proposed Roadmap 202
8.4 Identification and Prioritizing the Barriers in the Process 204
8.4.1 Internet Infrastructure 204
8.4.2 High Hardware and Software Cost 204
8.4.3 Less Qualified Workforce 204
8.5 Conclusion and Discussion 205
References 205
9 Application of High-Performance Computing in Synchrophasor Data
Management and Analysis for Power Grids 209
C.M. Thasnimol and R. Rajathy
9.1 Introduction 209
9.2 Applications of Synchrophasor Data 210
9.2.1 Voltage Stability Analysis 211
9.2.2 Transient Stability 212
9.2.3 Out of Step Splitting Protection 213
9.2.4 Multiple Event Detection 213
9.2.5 State Estimation 213
9.2.6 Fault Detection 214
9.2.7 Loss of Main (LOM) Detection 214
9.2.8 Topology Update Detection 214
9.2.9 Oscillation Detection 215
9.3 Utility Big Data Issues Related to PMU-Driven Applications 215
9.3.1 Heterogeneous Measurement Integration 215
9.3.2 Variety and Interoperability 216
9.3.3 Volume and Velocity 216
9.3.4 Data Quality and Security 216
9.3.5 Utilization and Analytics 217
9.3.6 Visualization of Data 218
9.4 Big Data Analytics Platforms for PMU Data Processing 219
9.4.1 Hadoop 220
9.4.2 Apache Spark 221
9.4.3 Apache HBase 222
9.4.4 Apache Storm 222
9.4.5 Cloud-Based Platforms 223
9.5 Conclusions 224
References 224
10 Intelligent Enterprise-Level Big Data Analytics for Modeling and
Management in Smart Internet of Roads 231
Amin Fadaeddini, Babak Majidi, and Mohammad Eshghi
10.1 Introduction 231
10.2 Fully Convolutional Deep Neural Network for Autonomous Vehicle
Identification 233
10.2.1 Detection of the Bounding Box of the License Plate 233
10.2.2 Segmentation Objective 234
10.2.3 Spatial Invariances 234
10.2.4 Model Framework 234
10.2.4.1 Increasing the Layer of Transformation 234
10.2.4.2 Data Format of Sample Images 235
10.2.4.3 Applying Batch Normalization 236
10.2.4.4 Network Architecture 236
10.2.5 Role of Data 236
10.2.6 Synthesizing Samples 236
10.2.7 Invariances 237
10.2.8 Reducing Number of Features 237
10.2.9 Choosing Number of Classes 238
10.3 Experimental Setup and Results 239
10.3.1 Sparse Softmax Loss 239
10.3.2 Mean Intersection Over Union 240
10.4 Practical Implementation of Enterprise-Level Big Data Analytics for
Smart City 240
10.5 Conclusion 244
References 244
11 Predictive Analysis of Intelligent Sensing and Cloud-Based Integrated
Water Management System 247
Tanuja Patgar and Ripal Patel
11.1 Introduction 247
11.2 Literature Survey 248
11.3 Proposed Six-Tier Data Framework 250
11.3.1 Primary Components 251
11.3.2 Contact Unit (FC-37) 253
11.3.3 Internet of Things Communicator (ESP8266) 253
11.3.4 GSM-Based ARM and Control System 253
11.3.5 Methodology 253
11.3.6 Proposed Algorithm 256
11.4 Implementation and Result Analysis 257
11.4.1 Water Report for Home 1 and Home 2 Modules 263
11.5 Conclusion 263
References 263
12 Data Security in the Internet of Things: Challenges and Opportunities
265
Shashwati Banerjea, Shashank Srivastava, and Sachin Kumar
12.1 Introduction 265
12.2 IoT: Brief Introduction 266
12.2.1 Challenges in a Secure IoT 267
12.2.2 Security Requirements in IoT Architecture 268
12.2.2.1 Sensing Layer 268
12.2.2.2 Network Layer 269
12.2.2.3 Interface Layer 271
12.2.3 Common Attacks in IoT 271
12.3 IoT Security Classification 272
12.3.1 Application Domain 272
12.3.1.1 Authentication 272
12.3.1.2 Authorization 274
12.3.1.3 Depletion of Resources 274
12.3.1.4 Establishment of Trust 275
12.3.2 Architectural Domain 275
12.3.2.1 Authentication in IoT Architecture 275
12.3.2.2 Authorization in IoT Architecture 276
12.3.3 Communication Channel 276
12.4 Security in IoT Data 277
12.4.1 IoT Data Security: Requirements 277
12.4.1.1 Data: Confidentiality, Integrity, and Authentication 278
12.4.1.2 Data Privacy 279
12.4.2 IoT Data Security: Research Directions 280
12.5 Conclusion 280
References 281
13 DDoS Attacks: Tools, Mitigation Approaches, and Probable Impact on
Private Cloud Environment 285
R. K. Deka, D. K. Bhattacharyya, and J. K. Kalita
13.1 Introduction 285
13.1.1 State of the Art 287
13.1.2 Contribution 288
13.1.3 Organization 290
13.2 Cloud and DDoS Attack 290
13.2.1 Cloud Deployment Models 290
13.2.1.1 Differences Between Private Cloud and Public Cloud 293
13.2.2 DDoS Attacks 294
13.2.2.1 Attacks on Infrastructure Level 294
13.2.2.2 Attacks on Application Level 296
13.2.3 DoS/DDoS Attack on Cloud: Probable Impact 297
13.3 Mitigation Approaches 298
13.3.1 Discussion 309
13.4 Challenges and Issues with Recommendations 309
13.5 A Generic Framework 310
13.6 Conclusion and Future Work 312
References 312
14 Securing the Defense Data for Making Better Decisions Using Data Fusion
321
Syed Rameem Zahra
14.1 Introduction 321
14.2 Analysis of Big Data 322
14.2.1 Existing IoT Big Data Analytics Systems 322
14.2.2 Big Data Analytical Methods 324
14.2.3 Challenges in IoT Big Data Analytics 324
14.3 Data Fusion 325
14.3.1 Opportunities Provided by Data Fusion 326
14.3.2 Data Fusion Challenges 326
14.3.3 Stages at Which Data Fusion Can Happen 326
14.3.4 Mathematical Methods for Data Fusion 326
14.4 Data Fusion for IoT Security 327
14.4.1 Defense Use Case 329
14.5 Conclusion 329
References 330
15 New Age Journalism and Big Data (Understanding Big Data and Its
Influence on Journalism) 333
Asif Khan and Heeba Din
15.1 Introduction 333
15.1.1 Big Data Journalism: The Next Big Thing 334
15.1.2 All About Data 336
15.1.3 Accessing Data for Journalism 337
15.1.4 Data Analytics: Tools for Journalists 338
15.1.5 Case Studies - Big Data 340
15.1.5.1 BBC Big Data 340
15.1.5.2 The Guardian Data Blog 342
15.1.5.3 Wikileaks 344
15.1.5.4 World Economic Forum 344
15.1.6 Big Data - Indian Scenario 345
15.1.7 Internet of Things and Journalism 346
15.1.8 Impact on Media/Journalism 347
References 348
16 Two Decades of Big Data in Finance: Systematic Literature Review and
Future Research Agenda 351
Nufazil Altaf
16.1 Introduction 351
16.2 Methodology 353
16.3 Article Identification and Selection 353
16.4 Description and Classification of Literature 354
16.4.1 Research Method Employed 354
16.4.2 Articles Published Year Wise 355
16.4.3 Journal of Publication 356
16.5 Content and Citation Analysis of Articles 356
16.5.1 Citation Analysis 356
16.5.2 Content Analysis 357
16.5.2.1 Big Data in Financial Markets 358
16.5.2.2 Big Data in Internet Finance 359
16.5.2.3 Big Data in Financial Services 359
16.5.2.4 Big Data and Other Financial Issues 360
16.6 Reporting of Findings and Research Gaps 360
16.6.1 Findings from the Literature Review 361
16.6.1.1 Lack of Symmetry 361
16.6.1.2 Dominance of Research on Financial Markets, Internet Finance, and
Financial Services 361
16.6.1.3 Dominance of Empirical Research 361
16.6.2 Directions for Future Research 362
References 362
Index 367
List of Abbreviations xix
1 Big Data Analytics for the Internet of Things: An Overview 1
Tausifa Jan Saleem and Mohammad Ahsan Chishti
2 Data, Analytics and Interoperability Between Systems (IoT) is Incongruous
with the Economics of Technology: Evolution of Porous Pareto Partition (P3)
7
Shoumen Palit Austin Datta, Tausifa Jan Saleem, Molood Barati, María
Victoria López López, Marie-Laure Furgala, Diana C. Vanegas, Gérald
Santucci, Pramod P. Khargonekar, and Eric S. McLamore
2.1 Context 8
2.2 Models in the Background 12
2.3 Problem Space: Are We Asking the Correct Questions? 14
2.4 Solutions Approach: The Elusive Quest to Build Bridges Between Data and
Decisions 15
2.5 Avoid This Space: The Deception Space 17
2.6 Explore the Solution Space: Necessary to Ask Questions That May Not
Have Answers, Yet 17
2.7 Solution Economy: Will We Ever Get There? 19
2.8 Is This Faux Naïveté in Its Purest Distillate? 21
2.9 Reality Check: Data Fusion 22
2.10 "Double A" Perspective of Data and Tools vs. The Hypothetical Porous
Pareto (80/20) Partition 28
2.11 Conundrums 29
2.12 Stigma of Partition vs. Astigmatism of Vision 38
2.13 The Illusion of Data, Delusion of Big Data, and the Absence of
Intelligence in AI 40
2.14 In Service of Society 50
2.15 Data Science in Service of Society: Knowledge and Performance from
PEAS 52
2.16 Temporary Conclusion 60
Acknowledgements 63
References 63
3 Machine Learning Techniques for IoT Data Analytics 89
Nailah Afshan and Ranjeet Kumar Rout
3.1 Introduction 89
3.2 Taxonomy of Machine Learning Techniques 94
3.2.1 Supervised ML Algorithm 95
3.2.1.1 Classification 96
3.2.1.2 Regression Analysis 98
3.2.1.3 Classification and Regression Tasks 99
3.2.2 Unsupervised Machine Learning Algorithms 103
3.2.2.1 Clustering 103
3.2.2.2 Feature Extraction 106
3.2.3 Conclusion 107
References 107
4 IoT Data Analytics Using Cloud Computing 115
Anjum Sheikh, Sunil Kumar, and Asha Ambhaikar
4.1 Introduction 115
4.2 IoT Data Analytics 117
4.2.1 Process of IoT Analytics 117
4.2.2 Types of Analytics 118
4.3 Cloud Computing for IoT 118
4.3.1 Deployment Models for Cloud 120
4.3.1.1 Private Cloud 120
4.3.1.2 Public Cloud 120
4.3.1.3 Hybrid Cloud 121
4.3.1.4 Community Cloud 121
4.3.2 Service Models for Cloud Computing 122
4.3.2.1 Software as a Service (SaaS) 122
4.3.2.2 Platform as a Service (PaaS) 122
4.3.2.3 Infrastructure as a Service (IaaS) 122
4.3.3 Data Analytics on Cloud 123
4.4 Cloud-Based IoT Data Analytics Platform 123
4.4.1 Atos Codex 125
4.4.2 AWS IoT 125
4.4.3 IBM Watson IoT 126
4.4.4 Hitachi Vantara Pentaho, Lumada 127
4.4.5 Microsoft Azure IoT 128
4.4.6 Oracle IoT Cloud Services 129
4.5 Machine Learning for IoT Analytics in Cloud 132
4.5.1 ML Algorithms for Data Analytics 132
4.5.2 Types of Predictions Supported by ML and Cloud 136
4.6 Challenges for Analytics Using Cloud 137
4.7 Conclusion 139
References 139
5 Deep Learning Architectures for IoT Data Analytics 143
Snowber Mushtaq and Omkar Singh
5.1 Introduction 143
5.1.1 Types of Learning Algorithms 146
5.1.1.1 Supervised Learning 146
5.1.1.2 Unsupervised Learning 146
5.1.1.3 Semi-Supervised Learning 146
5.1.1.4 Reinforcement Learning 146
5.1.2 Steps Involved in Solving a Problem 146
5.1.2.1 Basic Terminology 147
5.1.2.2 Training Process 147
5.1.3 Modeling in Data Science 147
5.1.3.1 Generative 148
5.1.3.2 Discriminative 148
5.1.4 Why DL and IoT? 148
5.2 DL Architectures 149
5.2.1 Restricted Boltzmann Machine 149
5.2.1.1 Training Boltzmann Machine 150
5.2.1.2 Applications of RBM 151
5.2.2 Deep Belief Networks (DBN) 151
5.2.2.1 Training DBN 152
5.2.2.2 Applications of DBN 153
5.2.3 Autoencoders 153
5.2.3.1 Training of AE 153
5.2.3.2 Applications of AE 154
5.2.4 Convolutional Neural Networks (CNN) 154
5.2.4.1 Layers of CNN 155
5.2.4.2 Activation Functions Used in CNN 156
5.2.4.3 Applications of CNN 158
5.2.5 Generative Adversarial Network (GANs) 158
5.2.5.1 Training of GANs 158
5.2.5.2 Variants of GANs 159
5.2.5.3 Applications of GANs 159
5.2.6 Recurrent Neural Networks (RNN) 159
5.2.6.1 Training of RNN 160
5.2.6.2 Applications of RNN 161
5.2.7 Long Short-Term Memory (LSTM) 161
5.2.7.1 Training of LSTM 161
5.2.7.2 Applications of LSTM 162
5.3 Conclusion 162
References 163
6 Adding Personal Touches to IoT: A User-Centric IoT Architecture 167
Sarabjeet Kaur Kochhar
6.1 Introduction 167
6.2 Enabling Technologies for BDA of IoT Systems 169
6.3 Personalizing the IoT 171
6.3.1 Personalization for Business 172
6.3.2 Personalization for Marketing 172
6.3.3 Personalization for Product Improvement and Service Optimization 173
6.3.4 Personalization for Automated Recommendations 174
6.3.5 Personalization for Improved User Experience 174
6.4 Related Work 175
6.5 User Sensitized IoT Architecture 176
6.6 The Tweaked Data Layer 178
6.7 The Personalization Layer 180
6.7.1 The Characterization Engine 180
6.7.2 The Sentiment Analyzer 182
6.8 Concerns and Future Directions 183
6.9 Conclusions 184
References 185
7 Smart Cities and the Internet of Things 187
Hemant Garg, Sushil Gupta, and Basant Garg
7.1 Introduction 187
7.2 Development of Smart Cities and the IoT 188
7.3 The Combination of the IoT with Development of City Architecture to
Form Smart Cities 189
7.3.1 Unification of the IoT 190
7.3.2 Security of Smart Cities 190
7.3.3 Management of Water and Related Amenities 190
7.3.4 Power Distribution and Management 191
7.3.5 Revenue Collection and Administration 191
7.3.6 Management of City Assets and Human Resources 192
7.3.7 Environmental Pollution Management 192
7.4 How Future Smart Cities Can Improve Their Utilization of the Internet
of All Things, with Examples 193
7.5 Conclusion 194
References 195
8 A Roadmap for Application of IoT-Generated Big Data in Environmental
Sustainability 197
Ankur Kashyap
8.1 Background and Motivation 197
8.2 Execution of the Study 198
8.2.1 Role of Big Data in Sustainability 198
8.2.2 Present Status and Future Possibilities of IoT in Environmental
Sustainability 199
8.3 Proposed Roadmap 202
8.4 Identification and Prioritizing the Barriers in the Process 204
8.4.1 Internet Infrastructure 204
8.4.2 High Hardware and Software Cost 204
8.4.3 Less Qualified Workforce 204
8.5 Conclusion and Discussion 205
References 205
9 Application of High-Performance Computing in Synchrophasor Data
Management and Analysis for Power Grids 209
C.M. Thasnimol and R. Rajathy
9.1 Introduction 209
9.2 Applications of Synchrophasor Data 210
9.2.1 Voltage Stability Analysis 211
9.2.2 Transient Stability 212
9.2.3 Out of Step Splitting Protection 213
9.2.4 Multiple Event Detection 213
9.2.5 State Estimation 213
9.2.6 Fault Detection 214
9.2.7 Loss of Main (LOM) Detection 214
9.2.8 Topology Update Detection 214
9.2.9 Oscillation Detection 215
9.3 Utility Big Data Issues Related to PMU-Driven Applications 215
9.3.1 Heterogeneous Measurement Integration 215
9.3.2 Variety and Interoperability 216
9.3.3 Volume and Velocity 216
9.3.4 Data Quality and Security 216
9.3.5 Utilization and Analytics 217
9.3.6 Visualization of Data 218
9.4 Big Data Analytics Platforms for PMU Data Processing 219
9.4.1 Hadoop 220
9.4.2 Apache Spark 221
9.4.3 Apache HBase 222
9.4.4 Apache Storm 222
9.4.5 Cloud-Based Platforms 223
9.5 Conclusions 224
References 224
10 Intelligent Enterprise-Level Big Data Analytics for Modeling and
Management in Smart Internet of Roads 231
Amin Fadaeddini, Babak Majidi, and Mohammad Eshghi
10.1 Introduction 231
10.2 Fully Convolutional Deep Neural Network for Autonomous Vehicle
Identification 233
10.2.1 Detection of the Bounding Box of the License Plate 233
10.2.2 Segmentation Objective 234
10.2.3 Spatial Invariances 234
10.2.4 Model Framework 234
10.2.4.1 Increasing the Layer of Transformation 234
10.2.4.2 Data Format of Sample Images 235
10.2.4.3 Applying Batch Normalization 236
10.2.4.4 Network Architecture 236
10.2.5 Role of Data 236
10.2.6 Synthesizing Samples 236
10.2.7 Invariances 237
10.2.8 Reducing Number of Features 237
10.2.9 Choosing Number of Classes 238
10.3 Experimental Setup and Results 239
10.3.1 Sparse Softmax Loss 239
10.3.2 Mean Intersection Over Union 240
10.4 Practical Implementation of Enterprise-Level Big Data Analytics for
Smart City 240
10.5 Conclusion 244
References 244
11 Predictive Analysis of Intelligent Sensing and Cloud-Based Integrated
Water Management System 247
Tanuja Patgar and Ripal Patel
11.1 Introduction 247
11.2 Literature Survey 248
11.3 Proposed Six-Tier Data Framework 250
11.3.1 Primary Components 251
11.3.2 Contact Unit (FC-37) 253
11.3.3 Internet of Things Communicator (ESP8266) 253
11.3.4 GSM-Based ARM and Control System 253
11.3.5 Methodology 253
11.3.6 Proposed Algorithm 256
11.4 Implementation and Result Analysis 257
11.4.1 Water Report for Home 1 and Home 2 Modules 263
11.5 Conclusion 263
References 263
12 Data Security in the Internet of Things: Challenges and Opportunities
265
Shashwati Banerjea, Shashank Srivastava, and Sachin Kumar
12.1 Introduction 265
12.2 IoT: Brief Introduction 266
12.2.1 Challenges in a Secure IoT 267
12.2.2 Security Requirements in IoT Architecture 268
12.2.2.1 Sensing Layer 268
12.2.2.2 Network Layer 269
12.2.2.3 Interface Layer 271
12.2.3 Common Attacks in IoT 271
12.3 IoT Security Classification 272
12.3.1 Application Domain 272
12.3.1.1 Authentication 272
12.3.1.2 Authorization 274
12.3.1.3 Depletion of Resources 274
12.3.1.4 Establishment of Trust 275
12.3.2 Architectural Domain 275
12.3.2.1 Authentication in IoT Architecture 275
12.3.2.2 Authorization in IoT Architecture 276
12.3.3 Communication Channel 276
12.4 Security in IoT Data 277
12.4.1 IoT Data Security: Requirements 277
12.4.1.1 Data: Confidentiality, Integrity, and Authentication 278
12.4.1.2 Data Privacy 279
12.4.2 IoT Data Security: Research Directions 280
12.5 Conclusion 280
References 281
13 DDoS Attacks: Tools, Mitigation Approaches, and Probable Impact on
Private Cloud Environment 285
R. K. Deka, D. K. Bhattacharyya, and J. K. Kalita
13.1 Introduction 285
13.1.1 State of the Art 287
13.1.2 Contribution 288
13.1.3 Organization 290
13.2 Cloud and DDoS Attack 290
13.2.1 Cloud Deployment Models 290
13.2.1.1 Differences Between Private Cloud and Public Cloud 293
13.2.2 DDoS Attacks 294
13.2.2.1 Attacks on Infrastructure Level 294
13.2.2.2 Attacks on Application Level 296
13.2.3 DoS/DDoS Attack on Cloud: Probable Impact 297
13.3 Mitigation Approaches 298
13.3.1 Discussion 309
13.4 Challenges and Issues with Recommendations 309
13.5 A Generic Framework 310
13.6 Conclusion and Future Work 312
References 312
14 Securing the Defense Data for Making Better Decisions Using Data Fusion
321
Syed Rameem Zahra
14.1 Introduction 321
14.2 Analysis of Big Data 322
14.2.1 Existing IoT Big Data Analytics Systems 322
14.2.2 Big Data Analytical Methods 324
14.2.3 Challenges in IoT Big Data Analytics 324
14.3 Data Fusion 325
14.3.1 Opportunities Provided by Data Fusion 326
14.3.2 Data Fusion Challenges 326
14.3.3 Stages at Which Data Fusion Can Happen 326
14.3.4 Mathematical Methods for Data Fusion 326
14.4 Data Fusion for IoT Security 327
14.4.1 Defense Use Case 329
14.5 Conclusion 329
References 330
15 New Age Journalism and Big Data (Understanding Big Data and Its
Influence on Journalism) 333
Asif Khan and Heeba Din
15.1 Introduction 333
15.1.1 Big Data Journalism: The Next Big Thing 334
15.1.2 All About Data 336
15.1.3 Accessing Data for Journalism 337
15.1.4 Data Analytics: Tools for Journalists 338
15.1.5 Case Studies - Big Data 340
15.1.5.1 BBC Big Data 340
15.1.5.2 The Guardian Data Blog 342
15.1.5.3 Wikileaks 344
15.1.5.4 World Economic Forum 344
15.1.6 Big Data - Indian Scenario 345
15.1.7 Internet of Things and Journalism 346
15.1.8 Impact on Media/Journalism 347
References 348
16 Two Decades of Big Data in Finance: Systematic Literature Review and
Future Research Agenda 351
Nufazil Altaf
16.1 Introduction 351
16.2 Methodology 353
16.3 Article Identification and Selection 353
16.4 Description and Classification of Literature 354
16.4.1 Research Method Employed 354
16.4.2 Articles Published Year Wise 355
16.4.3 Journal of Publication 356
16.5 Content and Citation Analysis of Articles 356
16.5.1 Citation Analysis 356
16.5.2 Content Analysis 357
16.5.2.1 Big Data in Financial Markets 358
16.5.2.2 Big Data in Internet Finance 359
16.5.2.3 Big Data in Financial Services 359
16.5.2.4 Big Data and Other Financial Issues 360
16.6 Reporting of Findings and Research Gaps 360
16.6.1 Findings from the Literature Review 361
16.6.1.1 Lack of Symmetry 361
16.6.1.2 Dominance of Research on Financial Markets, Internet Finance, and
Financial Services 361
16.6.1.3 Dominance of Empirical Research 361
16.6.2 Directions for Future Research 362
References 362
Index 367