52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
26 °P sammeln
Jetzt verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
26 °P sammeln
  • Format: ePub

This book provides an interdisciplinary introduction to the captivating and diverse photonic systems seen in nature and explores how we take inspiration from them to create new photonic materials and devices. The author walks readers through examples taken from nature, delves into their characterization and performance, and describes the unique features of their performance. She interweaves this material with discussions on fabricating synthetic versions of the systems as well as aspects of the biological examples that researchers are leveraging in their own work.

Produktbeschreibung
This book provides an interdisciplinary introduction to the captivating and diverse photonic systems seen in nature and explores how we take inspiration from them to create new photonic materials and devices. The author walks readers through examples taken from nature, delves into their characterization and performance, and describes the unique features of their performance. She interweaves this material with discussions on fabricating synthetic versions of the systems as well as aspects of the biological examples that researchers are leveraging in their own work.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Viktoria Greanya, PhD, is the chief of basic research in the Chemical and Biological Technologies Department at the U.S. Defense Threat Reduction Agency and a research associate professor at George Mason University. She has over a decade of experience in research and development in nanoscience (including nanotherapeutics, bioinspired photonic systems, nanostructured functional materials, and flexible photonic and electronic systems) as well as high-power and vacuum electronics, heterogeneous integration, and liquid crystals. She earned a PhD in condensed matter physics from Michigan State University.