Nusrat Rabbee
Biomarker Analysis in Clinical Trials with R (eBook, PDF)
43,95 €
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
43,95 €
Als Download kaufen
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
22 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
43,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
22 °P sammeln
Nusrat Rabbee
Biomarker Analysis in Clinical Trials with R (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book offers practical guidance on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 8.26MB
Andere Kunden interessierten sich auch für
- Nusrat RabbeeBiomarker Analysis in Clinical Trials with R (eBook, ePUB)43,95 €
- Andrew P. GrieveHybrid Frequentist/Bayesian Power and Bayesian Power in Planning Clinical Trials (eBook, PDF)48,95 €
- Stephanie GreenClinical Trials in Oncology (eBook, PDF)61,95 €
- Yoichi NishiyamaMartingale Methods in Statistics (eBook, PDF)58,95 €
- Douglas G. AltmanPractical Statistics for Medical Research (eBook, PDF)54,95 €
- Jonathan J. ShusterCRC Handbook of Sample Size Guidelines for Clinical Trials (eBook, PDF)51,95 €
- Teddy BaderWhich Treatment Is Best? Spoof or Proof? (eBook, PDF)24,95 €
-
-
-
The book offers practical guidance on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 228
- Erscheinungstermin: 11. März 2020
- Englisch
- ISBN-13: 9780429766800
- Artikelnr.: 58789400
- Verlag: Taylor & Francis
- Seitenzahl: 228
- Erscheinungstermin: 11. März 2020
- Englisch
- ISBN-13: 9780429766800
- Artikelnr.: 58789400
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Nusrat Rabbee is a biostatistician and data scientist at Rabbee & Associates, where she creates innovative solutions to help companies accelerate drug and diagnostic development for patients. Her research interest lies in the intersection of data science and personalized medicine. She has extensive experience in bioinformatics, clinical statistics and high-dimensional data analyses. She has co-discovered the RLMM algorithm for genotyping Affymetrix SNP chips and co-invented a high-dimensional molecular signature for cancer. She has spent over 17 years in the pharmaceutical and diagnostics industry focusing on biomarker development. She has taught statistics at UC Berkeley for 4 years.
Section I Pharmacodynamic Biomarkers 1. Introduction 2. Toxicology Studies
3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics
Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6.
Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7.
Introduction 8. Operational Characteristics of Proof-of-Concept Trials with
Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing
Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of
Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11.
Cutoff Determination of Continuous Predictive Biomarker Using Group
Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless
Design (ASD) Section III Surrogate Endpoints 14. Introduction 15.
Requirement # 1: Trial Level - Correlation Between Hazard Ratios in
Progression-Free Survival and Overall Survival Across Trials 16.
Requirement # 2: Individual Level - Assess the Correlation Between the
Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17.
Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18.
Concluding Remarks Section IV Combining Multiple Biomarkers 19.
Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster
Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics
Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6.
Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7.
Introduction 8. Operational Characteristics of Proof-of-Concept Trials with
Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing
Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of
Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11.
Cutoff Determination of Continuous Predictive Biomarker Using Group
Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless
Design (ASD) Section III Surrogate Endpoints 14. Introduction 15.
Requirement # 1: Trial Level - Correlation Between Hazard Ratios in
Progression-Free Survival and Overall Survival Across Trials 16.
Requirement # 2: Individual Level - Assess the Correlation Between the
Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17.
Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18.
Concluding Remarks Section IV Combining Multiple Biomarkers 19.
Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster
Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
Section I Pharmacodynamic Biomarkers 1. Introduction 2. Toxicology Studies 3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6. Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7. Introduction 8. Operational Characteristics of Proof-of-Concept Trials with Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11. Cutoff Determination of Continuous Predictive Biomarker Using Group Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless Design (ASD) Section III Surrogate Endpoints 14. Introduction 15. Requirement # 1: Trial Level - Correlation Between Hazard Ratios in Progression-Free Survival and Overall Survival Across Trials 16. Requirement # 2: Individual Level - Assess the Correlation Between the Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17. Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18. Concluding Remarks Section IV Combining Multiple Biomarkers 19. Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
Section I Pharmacodynamic Biomarkers 1. Introduction 2. Toxicology Studies
3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics
Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6.
Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7.
Introduction 8. Operational Characteristics of Proof-of-Concept Trials with
Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing
Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of
Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11.
Cutoff Determination of Continuous Predictive Biomarker Using Group
Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless
Design (ASD) Section III Surrogate Endpoints 14. Introduction 15.
Requirement # 1: Trial Level - Correlation Between Hazard Ratios in
Progression-Free Survival and Overall Survival Across Trials 16.
Requirement # 2: Individual Level - Assess the Correlation Between the
Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17.
Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18.
Concluding Remarks Section IV Combining Multiple Biomarkers 19.
Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster
Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics
Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6.
Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7.
Introduction 8. Operational Characteristics of Proof-of-Concept Trials with
Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing
Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of
Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11.
Cutoff Determination of Continuous Predictive Biomarker Using Group
Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless
Design (ASD) Section III Surrogate Endpoints 14. Introduction 15.
Requirement # 1: Trial Level - Correlation Between Hazard Ratios in
Progression-Free Survival and Overall Survival Across Trials 16.
Requirement # 2: Individual Level - Assess the Correlation Between the
Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17.
Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18.
Concluding Remarks Section IV Combining Multiple Biomarkers 19.
Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster
Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
Section I Pharmacodynamic Biomarkers 1. Introduction 2. Toxicology Studies 3. Bioequivalence Studies 4. Cross-Sectional Profile of Pharmacodynamics Biomarkers 5. Timecourse Profile of Pharmacodynamics Biomarkers 6. Evaluating Multiple Biomarkers Section II Predictive Biomarkers 7. Introduction 8. Operational Characteristics of Proof-of-Concept Trials with Biomarker-Positive and -Negative Subgroups 9. A Framework for Testing Biomarker Subgroups in Confirmatory Trials 10. Cutoff Determination of Continuous Predictive Biomarker for a Biomarker-Treatment Interaction 11. Cutoff Determination of Continuous Predictive Biomarker Using Group Sequential Methodology 12. Adaptive Threshold Design 13. Adaptive Seamless Design (ASD) Section III Surrogate Endpoints 14. Introduction 15. Requirement # 1: Trial Level - Correlation Between Hazard Ratios in Progression-Free Survival and Overall Survival Across Trials 16. Requirement # 2: Individual Level - Assess the Correlation Between the Surrogate and True Endpoints After Adjusting for Treatment (R2 indiv) 17. Examining the Proportion of Treatment Effect in AIDS Clinical Trials 18. Concluding Remarks Section IV Combining Multiple Biomarkers 19. Introduction 20. Regression-Based Models 21. Tree-Based Models 22. Cluster Analysis 23. Graphical Models Section V Biomarker Statistical Analysis Plan
I can imagine applied statisticians having a hardcover version on their desks near their computer, in a somewhat overused condition, referring to this every now and then for the implementation of the described methods in practice. Goal achieved in such a case.
- Christos T. Nakas, International Society for Clinical Biostatistics, 71, 2021
- Christos T. Nakas, International Society for Clinical Biostatistics, 71, 2021