Biomechatronic Design in Biotechnology (eBook, ePUB)
A Methodology for Development of Biotechnological Products
Alle Infos zum eBook verschenken
Biomechatronic Design in Biotechnology (eBook, ePUB)
A Methodology for Development of Biotechnological Products
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
"... a must-read for all modern bio-scientists and engineers working in the field of biotechnology." - Biotechnology Journal, 2012, 7 A cutting-edge guide on the fundamentals, theory, and applications of biomechatronic design principles Biomechatronic Design in Biotechnology presents a complete methodology of biomechatronics, an emerging variant of the mechatronics field that marries biology, electronics, and mechanics to create products where biological and biochemical, technical, human, management-and-goal, and information systems are combined and integrated in order to solve a mission that…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.81MB
- Carl-Fredrik MandeniusBiomechatronic Design in Biotechnology (eBook, PDF)90,99 €
- Applied Bioengineering (eBook, ePUB)178,99 €
- Emerging Areas in Bioengineering (eBook, ePUB)336,99 €
- Philippa B. CranwellFoundations of Chemistry (eBook, ePUB)48,99 €
- Wei-Shou HuEngineering Principles in Biotechnology (eBook, ePUB)100,99 €
- Rebecca A. BaderEngineering Polymer Systems for Improved Drug Delivery (eBook, ePUB)116,99 €
- Hossein HosseinkhaniBiomedical Engineering (eBook, ePUB)133,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 9. Juni 2011
- Englisch
- ISBN-13: 9781118067130
- Artikelnr.: 37484644
- Verlag: John Wiley & Sons
- Seitenzahl: 256
- Erscheinungstermin: 9. Juni 2011
- Englisch
- ISBN-13: 9781118067130
- Artikelnr.: 37484644
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction 1
1.1 Scope of Design / 1
1.2 Definition of Biomechatronic Products / 3
1.3 Principles of Biomechatronics / 4
1.4 Brief History of the Development of Biomechatronic Products and
Engineering / 7
1.5 Aim of This Book / 9
References / 10
PART I FUNDAMENTALS 13
2 Conceptual Design Theory 15
2.1 Systematic Design / 15
2.1.1 Design for Products / 15
2.1.2 Origin of the Design Task / 18
2.1.3 Development of Design Thinking / 18
2.1.4 Recent Methods / 20
2.2 Basics of Technical Systems / 21
2.2.1 Energy, Material, and Signals and Their Conversion / 22
2.2.2 Interrelationships of Functions / 22
2.2.3 Interrelationship of Constructions / 25
2.2.4 Interrelationship of Systems / 25
2.3 Psychology in the Systematic Approach / 25
2.4 A General Working Methodology / 26
2.4.1 Analysis for Resolving Technical Problems / 27
2.4.2 Abstraction of Interrelationships of Systems / 28
2.4.3 Synthesis of the Technical System / 28
2.5 Conceptual Design / 28
2.6 Abstraction inOrder to Identify Essential Problems / 29
2.7 Developing the Concepts / 31
2.7.1 Organizing the Development Process / 33
2.8 Concluding Remarks / 34
References / 35
3 Biotechnology and Mechatronic Design 37
3.1 Transduction of the Biological Science into Biotechnology / 37
3.2 Biological Sciences and Their Applications / 39
3.3 Biotechnology and Bioengineering / 42
3.4 Applying Mechatronic Theory to Biotechnology: Biomechatronics / 44
3.5 Conclusions / 47
References / 48
4 Methodology for Utilization of Mechatronic Design Tools 49
4.1 Idea of Applying the Mechatronic Design Tools / 49
4.2 Table of User Needs / 51
4.3 List of Target Specifications / 52
4.4 Concept Generation Chart / 52
4.4.1 Basic Concept Component Chart / 53
4.4.2 Permutation Chart / 54
4.5 Concept Screening Matrix / 55
4.6 Concept Scoring Matrix / 56
4.7 Hubka-Eder Mapping / 57
4.7.1 Overview Hubka-Eder Map / 57
4.7.2 Zoom-in Hubka-Eder Mapping / 59
4.8 Functions Interaction Matrix / 60
4.8.1 Functions Interaction Matrix for Systems and Subsystems / 60
4.8.2 Functions Interaction Matrix for Systems and Transformation Process /
61
4.8.3 Design Structure Matrix / 61
4.9 Anatomical Blueprint / 62
4.10 Conclusions / 63
References / 63
PART II APPLICATIONS 65
5 Blood Glucose Sensors 67
5.1 Background of Blood Glucose Analysis / 67
5.2 Specification of Needs for Blood Glucose Analysis / 70
5.3 Design of Blood Glucose Sensors / 71
5.3.1 Generation of Sensor Concepts / 71
5.4 Description of the Systems Involved in the Design Concepts for Glucose
Blood Sensors / 76
5.4.1 Biological Systems / 77
5.4.2 Technical Systems / 77
5.4.3 Information Systems / 78
5.4.4 Management and Goal Systems / 78
5.4.5 Human Systems / 79
5.4.6 Active Environment / 79
5.4.7 Interactions Between the Systems and Functions of the Design / 79
5.4.8 Anatomical Blueprints from the Functions Interaction Matrix Analysis
/ 81
5.5 Conclusions / 82
References / 82
6 Surface Plasmon Resonance Biosensor Devices 85
6.1 Introduction / 85
6.2 Design Requirements on SPR Systems / 88
6.2.1 Needs and Specifications of an SPR Design / 88
6.3 Mechatronic Design Approach of SPR Systems / 89
6.3.1 Generation of Design Alternatives / 89
6.3.2 Hubka-Eder Mapping of the Design Alternatives / 92
6.4 Detailed Design of Critical SPR Subsystems / 99
6.4.1 Design of the Sensor Surface / 100
6.4.2 Design of the Fluidic System / 103
6.5 Conclusions / 109
References / 109
7 A Diagnostic Device for Helicobacter pylori Infection 113
7.1 Diagnostic Principle of Helicobacter Infection / 113
7.2 Mechatronic Analysis of Urea Breath Test Systems / 117
7.2.1 Mission and Specification for a Urea Breath Tests / 117
7.2.2 Generation of UBT Design Concepts / 118
7.2.3 Screening and Scoring of UBT Design Concepts / 119
7.3 Description of the Systems Involved in the Design Concepts for the Urea
Breath Tests / 124
7.3.1 Biological Systems Involved / 124
7.3.2 Technical Systems Alternatives / 126
7.3.3 Information Systems (SIS) Required / 127
7.3.4 Management and Goal Systems Required / 127
7.3.5 Human Systems Involved in the Testing / 127
7.3.6 Active Environment That Can Influence / 128
7.4 Aspects of the Design for Efficient Manufacture / 128
7.5 Conclusions / 131
References / 131
8 Microarray Devices 135
8.1 Principles, Methods, and Applications of Microarrays / 135
8.1.1 Principles and Technology / 135
8.1.2 Fabrication Methods / 136
8.1.3 Companies Developing Microarrays / 138
8.1.4 Applications of DNA Microarrays / 139
8.2 Specification of Needs / 141
8.3 Design of Microarrays / 142
8.3.1 Generation of cDNA Microarray Concepts / 142
8.4 Description of the Systems Involved in the Design Concepts / 145
8.4.1 Biological Systems / 146
8.4.2 Technical Systems / 147
8.4.3 Information System / 147
8.4.4 Management and Goal Systems and the Human Systems / 147
8.4.5 Active Environment / 147
8.4.6 Interaction Analysis / 148
8.5 Conclusions / 149
References / 149
9 Microbial and Cellular Bioreactors 153
9.1 Bioreactor Development During the 1970s-1990s / 153
9.2 Missions, User Needs, and Specifications for Bioreactors / 158
9.2.1 Design Mission and User Needs / 158
9.2.2 Target Specifications / 158
9.3 Analysis of Systems for Conventional Bioreactors / 161
9.3.1 Biological Systems in the Bioreactor / 161
9.3.2 Technical Systems / 164
9.3.3 Studying the Interactions of the Systems / 166
9.3.4 Penicillin Production in a Metabolically Engineered Penicillium
strain (Case 1) / 168
9.3.5 A Bioreactor System Producing a Recombinant Protein in CHO Cell
Culture (Case 2) / 171
9.3.6 Information Systems / 173
9.3.7 Management and Goal Systems / 177
9.3.8 Human Systems / 179
9.3.9 Active Environment / 179
9.4 Novel Bioreactor Designs / 180
9.4.1 Microbioreactors / 180
9.4.2 Bioreactors with Immobilized Cells / 183
9.4.3 Bioreactors for Tissue and Stem Cell Cultures / 185
9.4.4 Bioreactors for Plant Cell Cultures / 186
9.5 Conclusions / 187
References / 187
10 Chromatographic Protein Purification 193
10.1 Background of Chromatographic Protein Purification / 193
10.2 Specification of Needs for Protein Purification Systems / 197
10.3 Design of Purification Systems / 199
10.3.1 Generation of Design Alternatives / 199
10.3.2 Screening the Design Alternatives / 201
10.3.3 Analysis of the Generated Alternatives for a Chromatography System /
202
10.3.4 Interactions Between Key Systems and the Transformation Process /
206
10.4 Unit Operation Purification in a FVIII Production Process (Case 1) /
208
10.5 Micropurification System Based on a Multichip Device (Case 2) / 209
10.6 Conclusions / 211
References / 212
11 Stem Cell Manufacturing 215
11.1 State of the Art of Stem Cell Manufacturing / 215
11.2 Needs and Target Specifications for Scaled-Up Stem Cell Manufacturing
/ 218
11.3 Setting Up an Efficient Manufacturing System by Using Biomechatronic
Conceptual Design / 220
11.3.1 Generating Process Alternatives / 220
11.3.2 Hubka-Eder Map for a Human Embryonic Stem Cell Process / 220
11.4 Conclusions / 225
References / 226
12 Bioartificial Organ-Simulating Devices 229
12.1 Introduction / 229
12.2 Design of Bioartificial Organ-Simulation Devices / 232
12.2.1 Needs and Specifications / 232
12.2.2 Evaluation of the Design Concepts / 236
12.3 Analysis of Bioartificial Liver Systems / 239
12.3.1 Biological Systems / 239
12.3.2 Technical Systems / 241
12.3.3 Information Systems / 242
12.3.4 Management and Goals Systems / 243
12.3.5 Human Systems / 243
12.4 Conclusions / 244
References / 244
13 Applications to Process Analytical Technology and Quality by Design 249
13.1 PAT and QbD Concepts / 249
13.2 Needs of the PAT/QbD Players and Resulting Specifications / 253
13.3 Application of Design Methodology to PAT/QbD / 255
13.3.1 Concept Generation for a PAT/QbD System Structure / 255
13.3.2 Hubka-Eder Mapping of the PAT/QbD Transformation Process for a
Pharmaceutical
Process / 257
13.3.3 Analysis of Effects / 259
13.4 Applying Mechatronic Design on a PAT System for Online Software
Sensing in a Bioprocess (Case) / 260
13.5 Conclusions / 263
References / 263
GLOSSARY 267
INDEX 275
1 Introduction 1
1.1 Scope of Design / 1
1.2 Definition of Biomechatronic Products / 3
1.3 Principles of Biomechatronics / 4
1.4 Brief History of the Development of Biomechatronic Products and
Engineering / 7
1.5 Aim of This Book / 9
References / 10
PART I FUNDAMENTALS 13
2 Conceptual Design Theory 15
2.1 Systematic Design / 15
2.1.1 Design for Products / 15
2.1.2 Origin of the Design Task / 18
2.1.3 Development of Design Thinking / 18
2.1.4 Recent Methods / 20
2.2 Basics of Technical Systems / 21
2.2.1 Energy, Material, and Signals and Their Conversion / 22
2.2.2 Interrelationships of Functions / 22
2.2.3 Interrelationship of Constructions / 25
2.2.4 Interrelationship of Systems / 25
2.3 Psychology in the Systematic Approach / 25
2.4 A General Working Methodology / 26
2.4.1 Analysis for Resolving Technical Problems / 27
2.4.2 Abstraction of Interrelationships of Systems / 28
2.4.3 Synthesis of the Technical System / 28
2.5 Conceptual Design / 28
2.6 Abstraction inOrder to Identify Essential Problems / 29
2.7 Developing the Concepts / 31
2.7.1 Organizing the Development Process / 33
2.8 Concluding Remarks / 34
References / 35
3 Biotechnology and Mechatronic Design 37
3.1 Transduction of the Biological Science into Biotechnology / 37
3.2 Biological Sciences and Their Applications / 39
3.3 Biotechnology and Bioengineering / 42
3.4 Applying Mechatronic Theory to Biotechnology: Biomechatronics / 44
3.5 Conclusions / 47
References / 48
4 Methodology for Utilization of Mechatronic Design Tools 49
4.1 Idea of Applying the Mechatronic Design Tools / 49
4.2 Table of User Needs / 51
4.3 List of Target Specifications / 52
4.4 Concept Generation Chart / 52
4.4.1 Basic Concept Component Chart / 53
4.4.2 Permutation Chart / 54
4.5 Concept Screening Matrix / 55
4.6 Concept Scoring Matrix / 56
4.7 Hubka-Eder Mapping / 57
4.7.1 Overview Hubka-Eder Map / 57
4.7.2 Zoom-in Hubka-Eder Mapping / 59
4.8 Functions Interaction Matrix / 60
4.8.1 Functions Interaction Matrix for Systems and Subsystems / 60
4.8.2 Functions Interaction Matrix for Systems and Transformation Process /
61
4.8.3 Design Structure Matrix / 61
4.9 Anatomical Blueprint / 62
4.10 Conclusions / 63
References / 63
PART II APPLICATIONS 65
5 Blood Glucose Sensors 67
5.1 Background of Blood Glucose Analysis / 67
5.2 Specification of Needs for Blood Glucose Analysis / 70
5.3 Design of Blood Glucose Sensors / 71
5.3.1 Generation of Sensor Concepts / 71
5.4 Description of the Systems Involved in the Design Concepts for Glucose
Blood Sensors / 76
5.4.1 Biological Systems / 77
5.4.2 Technical Systems / 77
5.4.3 Information Systems / 78
5.4.4 Management and Goal Systems / 78
5.4.5 Human Systems / 79
5.4.6 Active Environment / 79
5.4.7 Interactions Between the Systems and Functions of the Design / 79
5.4.8 Anatomical Blueprints from the Functions Interaction Matrix Analysis
/ 81
5.5 Conclusions / 82
References / 82
6 Surface Plasmon Resonance Biosensor Devices 85
6.1 Introduction / 85
6.2 Design Requirements on SPR Systems / 88
6.2.1 Needs and Specifications of an SPR Design / 88
6.3 Mechatronic Design Approach of SPR Systems / 89
6.3.1 Generation of Design Alternatives / 89
6.3.2 Hubka-Eder Mapping of the Design Alternatives / 92
6.4 Detailed Design of Critical SPR Subsystems / 99
6.4.1 Design of the Sensor Surface / 100
6.4.2 Design of the Fluidic System / 103
6.5 Conclusions / 109
References / 109
7 A Diagnostic Device for Helicobacter pylori Infection 113
7.1 Diagnostic Principle of Helicobacter Infection / 113
7.2 Mechatronic Analysis of Urea Breath Test Systems / 117
7.2.1 Mission and Specification for a Urea Breath Tests / 117
7.2.2 Generation of UBT Design Concepts / 118
7.2.3 Screening and Scoring of UBT Design Concepts / 119
7.3 Description of the Systems Involved in the Design Concepts for the Urea
Breath Tests / 124
7.3.1 Biological Systems Involved / 124
7.3.2 Technical Systems Alternatives / 126
7.3.3 Information Systems (SIS) Required / 127
7.3.4 Management and Goal Systems Required / 127
7.3.5 Human Systems Involved in the Testing / 127
7.3.6 Active Environment That Can Influence / 128
7.4 Aspects of the Design for Efficient Manufacture / 128
7.5 Conclusions / 131
References / 131
8 Microarray Devices 135
8.1 Principles, Methods, and Applications of Microarrays / 135
8.1.1 Principles and Technology / 135
8.1.2 Fabrication Methods / 136
8.1.3 Companies Developing Microarrays / 138
8.1.4 Applications of DNA Microarrays / 139
8.2 Specification of Needs / 141
8.3 Design of Microarrays / 142
8.3.1 Generation of cDNA Microarray Concepts / 142
8.4 Description of the Systems Involved in the Design Concepts / 145
8.4.1 Biological Systems / 146
8.4.2 Technical Systems / 147
8.4.3 Information System / 147
8.4.4 Management and Goal Systems and the Human Systems / 147
8.4.5 Active Environment / 147
8.4.6 Interaction Analysis / 148
8.5 Conclusions / 149
References / 149
9 Microbial and Cellular Bioreactors 153
9.1 Bioreactor Development During the 1970s-1990s / 153
9.2 Missions, User Needs, and Specifications for Bioreactors / 158
9.2.1 Design Mission and User Needs / 158
9.2.2 Target Specifications / 158
9.3 Analysis of Systems for Conventional Bioreactors / 161
9.3.1 Biological Systems in the Bioreactor / 161
9.3.2 Technical Systems / 164
9.3.3 Studying the Interactions of the Systems / 166
9.3.4 Penicillin Production in a Metabolically Engineered Penicillium
strain (Case 1) / 168
9.3.5 A Bioreactor System Producing a Recombinant Protein in CHO Cell
Culture (Case 2) / 171
9.3.6 Information Systems / 173
9.3.7 Management and Goal Systems / 177
9.3.8 Human Systems / 179
9.3.9 Active Environment / 179
9.4 Novel Bioreactor Designs / 180
9.4.1 Microbioreactors / 180
9.4.2 Bioreactors with Immobilized Cells / 183
9.4.3 Bioreactors for Tissue and Stem Cell Cultures / 185
9.4.4 Bioreactors for Plant Cell Cultures / 186
9.5 Conclusions / 187
References / 187
10 Chromatographic Protein Purification 193
10.1 Background of Chromatographic Protein Purification / 193
10.2 Specification of Needs for Protein Purification Systems / 197
10.3 Design of Purification Systems / 199
10.3.1 Generation of Design Alternatives / 199
10.3.2 Screening the Design Alternatives / 201
10.3.3 Analysis of the Generated Alternatives for a Chromatography System /
202
10.3.4 Interactions Between Key Systems and the Transformation Process /
206
10.4 Unit Operation Purification in a FVIII Production Process (Case 1) /
208
10.5 Micropurification System Based on a Multichip Device (Case 2) / 209
10.6 Conclusions / 211
References / 212
11 Stem Cell Manufacturing 215
11.1 State of the Art of Stem Cell Manufacturing / 215
11.2 Needs and Target Specifications for Scaled-Up Stem Cell Manufacturing
/ 218
11.3 Setting Up an Efficient Manufacturing System by Using Biomechatronic
Conceptual Design / 220
11.3.1 Generating Process Alternatives / 220
11.3.2 Hubka-Eder Map for a Human Embryonic Stem Cell Process / 220
11.4 Conclusions / 225
References / 226
12 Bioartificial Organ-Simulating Devices 229
12.1 Introduction / 229
12.2 Design of Bioartificial Organ-Simulation Devices / 232
12.2.1 Needs and Specifications / 232
12.2.2 Evaluation of the Design Concepts / 236
12.3 Analysis of Bioartificial Liver Systems / 239
12.3.1 Biological Systems / 239
12.3.2 Technical Systems / 241
12.3.3 Information Systems / 242
12.3.4 Management and Goals Systems / 243
12.3.5 Human Systems / 243
12.4 Conclusions / 244
References / 244
13 Applications to Process Analytical Technology and Quality by Design 249
13.1 PAT and QbD Concepts / 249
13.2 Needs of the PAT/QbD Players and Resulting Specifications / 253
13.3 Application of Design Methodology to PAT/QbD / 255
13.3.1 Concept Generation for a PAT/QbD System Structure / 255
13.3.2 Hubka-Eder Mapping of the PAT/QbD Transformation Process for a
Pharmaceutical
Process / 257
13.3.3 Analysis of Effects / 259
13.4 Applying Mechatronic Design on a PAT System for Online Software
Sensing in a Bioprocess (Case) / 260
13.5 Conclusions / 263
References / 263
GLOSSARY 267
INDEX 275