213,99 €
213,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
213,99 €
213,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
213,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
213,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Biomedical Materials and Diagnostics Devices provides an up-to-date overview of the fascinating and emerging field of biomedical materials and devices, fabrication, performance, and uses The biomedical materials with the most promising potential combine biocompatibility with the ability to adjust precisely the biological phenomena in a controlled manner. The world market for biomedical and diagnostic devices is expanding rapidly and the pace of academic research resulted in about 50,000 published papers in recent years. It is timely, therefore, to assemble a volume on this important subject.…mehr

Produktbeschreibung
Biomedical Materials and Diagnostics Devices provides an up-to-date overview of the fascinating and emerging field of biomedical materials and devices, fabrication, performance, and uses The biomedical materials with the most promising potential combine biocompatibility with the ability to adjust precisely the biological phenomena in a controlled manner. The world market for biomedical and diagnostic devices is expanding rapidly and the pace of academic research resulted in about 50,000 published papers in recent years. It is timely, therefore, to assemble a volume on this important subject. The chapters in the book seek to address progress in successful design strategies for biomedical materials and devices such as the use of collagen, crystalline calcium orthophosphates, amphiphilic polymers, polycaprolactone, biomimetic assembly, bio-nanocomposite matrices, bio-silica, theranostic nanobiomaterials, intelligent drug delivery systems, elastomeric nanobiomaterials, electrospun nano-matrices, metal nanoparticles, and a variety of biosensors. This large and comprehensive volume includes twenty chapters authored by some of the leading researchers in the field, and is divided into four main areas: biomedical materials; diagnostic devices; drug delivery and therapeutics; and tissue engineering and organ regeneration.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ashutosh Tiwari is an assistant professor of nanobioelectronics at Biosensors and Bioelectronics Centre, IFM-Linköping University, Sweden, as well as Editor-in-Chief of Advanced Materials Letters. He has published more than 125 articles and patents as well as authored/edited books in the field of materials science and technology. Murugan Ramalingam is an associate professor of biomaterials and tissue engineering at the Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg (UdS), France. Concurrently, he holds an adjunct associate professorship at Tohoku University, Japan. He has authored more than 125 publications and is Editor-in-Chief of Journal of Bionanoscience and Journal of Biomaterials and Tissue Engineering. Hisatoshi Kobayashi is group leader of Biofunctional Materials at Biomaterials Centre, National Institute for Materials Science, Japan. He has published more than 150 publications, books and patents in the field of biomaterials science and technology, as well as edited/authored three books on the advanced state-of-the-art of biomaterials. Professor Anthony P. F. Turner is currently Head of Division, FM-Linköping University's new Centre for Biosensors and Bioelectronics. His previous thirty-five-year academic career in the United Kingdom culminated in the positions of Principal (Rector) of Cranfield University and Distinguished Professor of Biotechnology. Professor Turner has more than 600 publications and patents in the field of biosensors and biomimetic sensors and is best known for his role in the development of glucose sensors for home-use by people with diabetes. He published the first textbook on Biosensors in 1987 and is Editor-In-Chief of the principal journal in his field, Biosensors & Bioelectronics, which he cofounded in 1985.