Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Der Inhalt
Die Zielgruppen
Der Autor
Moritz Berger studierte an der LMU München Statistik und arbeitet derzeit am dortigen Institut für Statistik als wissenschaftlicher Mitarbeiter am Seminar für angewandte Stochastik. Hauptsächlich beschäftigt er sich bei seiner Tätigkeit mit Regressionsproblemen in hochdimensionalen Datenstrukturen.
Der Inhalt
- Item-Response-Modelle in Form logistischer Regressionsmodelle
- Modellierung von Differential Item Functioning
- Regularisierung mithilfe von Boosting-Verfahren
Die Zielgruppen
- Dozierende und Studierende der Bereiche Psychologie, Statistik und Mathematik
- Fachkräfte im Bereich Psychologie und der Auswertung psychologischer Tests
Der Autor
Moritz Berger studierte an der LMU München Statistik und arbeitet derzeit am dortigen Institut für Statistik als wissenschaftlicher Mitarbeiter am Seminar für angewandte Stochastik. Hauptsächlich beschäftigt er sich bei seiner Tätigkeit mit Regressionsproblemen in hochdimensionalen Datenstrukturen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.