Interestingly, the conformal module of a conjugacy class of braids is inversely proportional to a popular dynamical invariant, the entropy, which was studied in connection with Thurston's celebrated theory of surface homeomorphisms. This result, proved here for the first time, is another instance of the numerous manifestations of the unity of mathematics, and it has applications.
After prerequisites on Riemann surfaces, braids, mapping classes and elements of Teichmüller theory, a detailed introduction to the entropy of braids and mapping classes is given, with thorough, sometimes new proofs.
Estimates are provided of Gromov's conformal invariants of the twice punctured complex plane and it is shown that the upper and lower bounds differ by universal multiplicative constants. These imply estimates of the entropy of any pure three-braid, and yield quantitative statements on the limitations of Gromov's Oka Principle in the sense of finiteness theorems, using conformal invariants which are related to elements of the fundamental group (not merely to conjugacy classes). Further applications of the concept of conformal module are discussed. Aimed at graduate students and researchers, the book proposes several research problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.