Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Notational remarks.- Basic definitions.- Full bundles and bundles with completely regular base space.- Bundles with locally paracompact base spaces.- Stone - Weierstraß theorems for bundles.- An alternative description of spaces of sections: Function modules.- Some algebraic aspects of ?-spaces.- A third description of spaces of sections: C(X)-convex modules.- C(X)-submodules of ?(p).- Quotients of bundles and C(X)-modules.- Morphisms between bundles.- Bundles of operators.- Excursion: Continuous lattices and bundles.- M-structure and bundles.- An adequate M-theory for ?-spaces.- Duality.- The closure of the "unit ball" of a bundle and separation axioms.- Locally trivial bundles: A definition.- Local linear independence.- The space Mod(?(p),C(X)).- Internal duality of C(X)-modules.- The dual space ?(p)' of a space of sections.
Notational remarks.- Basic definitions.- Full bundles and bundles with completely regular base space.- Bundles with locally paracompact base spaces.- Stone - Weierstraß theorems for bundles.- An alternative description of spaces of sections: Function modules.- Some algebraic aspects of ?-spaces.- A third description of spaces of sections: C(X)-convex modules.- C(X)-submodules of ?(p).- Quotients of bundles and C(X)-modules.- Morphisms between bundles.- Bundles of operators.- Excursion: Continuous lattices and bundles.- M-structure and bundles.- An adequate M-theory for ?-spaces.- Duality.- The closure of the "unit ball" of a bundle and separation axioms.- Locally trivial bundles: A definition.- Local linear independence.- The space Mod(?(p),C(X)).- Internal duality of C(X)-modules.- The dual space ?(p)' of a space of sections.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826