Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This Brief reports on heat transfer from a solid boundary in a saturated porous medium. Experiments reveal overall heat transfer laws when the flow along the wall is driven by buoyancy produced by large temperature differences, and mathematical analysis using advanced volume-averaging techniques produce estimates of how heat is dispersed in the porous zone. Engineers, hydrologists and geophysicists will find the results valuable for validation of laboratory and field tests, as well as testing their models of dispersion of heat and mass in saturated media.
This Brief reports on heat transfer from a solid boundary in a saturated porous medium. Experiments reveal overall heat transfer laws when the flow along the wall is driven by buoyancy produced by large temperature differences, and mathematical analysis using advanced volume-averaging techniques produce estimates of how heat is dispersed in the porous zone. Engineers, hydrologists and geophysicists will find the results valuable for validation of laboratory and field tests, as well as testing their models of dispersion of heat and mass in saturated media.
Dr. Hitoshi Sakamoto is a research scientist with Huawei Technologies, KK, Japan. Dr. Francis Kulacki is Professor of Mechanical Engineering at the University of Minnesota.
Inhaltsangabe
Introduction.- Prior Research.- The Volume-Averaged Energy Equations.- Heat Transfer Measurements.- Results.- Thermal Dispersion.- Conclusion.
Introduction.- Prior Research.- The Volume-Averaged Energy Equations.- Heat Transfer Measurements.- Results.- Thermal Dispersion.- Conclusion.