Cable System Transients (eBook, ePUB)
Theory, Modeling and Simulation
Alle Infos zum eBook verschenken
Cable System Transients (eBook, ePUB)
Theory, Modeling and Simulation
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field * Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems * Written by the internationally renowned pioneer in the field * Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications * A companion website is available
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 48.75MB
- Akihiro AmetaniCable System Transients (eBook, PDF)128,99 €
- Hsiao-Dong ChiangDirect Methods for Stability Analysis of Electric Power Systems (eBook, ePUB)154,99 €
- Juha PyrhonenDesign of Rotating Electrical Machines (eBook, ePUB)115,99 €
- Braham FerreiraThe Principles of Electronic and Electromechanic Power Conversion (eBook, ePUB)91,99 €
- Robert C. QiuSmart Grid using Big Data Analytics (eBook, ePUB)99,99 €
- Glenn MottersheadHandbook of Large Hydro Generators (eBook, ePUB)152,99 €
- Sheppard J. SalonEddy Currents (eBook, ePUB)103,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley-IEEE Press
- Seitenzahl: 416
- Erscheinungstermin: 26. Mai 2015
- Englisch
- ISBN-13: 9781118702185
- Artikelnr.: 42962720
- Verlag: Wiley-IEEE Press
- Seitenzahl: 416
- Erscheinungstermin: 26. Mai 2015
- Englisch
- ISBN-13: 9781118702185
- Artikelnr.: 42962720
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
e 91 3.4.3 Sheath Thickness d 91 3.4.4 Sheath Resistivity
s 91 3.4.5 Arrangement of a Three-phase SC Cable 93 3.5 Cross-bonded Cable 94 3.5.1 Introduction of Cross-bonded Cable 94 3.5.2 Theoretical Formulation of a Cross-bonded Cable 95 3.5.3 Homogeneous Model of a Cross-bonded Cable 102 3.5.4 Difference between Tunnel-installed and Buried Cables 105 3.6 PT Cable 114 3.6.1 Introduction of PT Cable 114 3.6.2 PT Cable with Finite-pipe Thickness 115 3.6.3 Effect of Eccentricity of Inner Conductor 128 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator 133 3.6.5 Overhead PT Cable 133 3.7 Propagation Characteristics of Intersheath Modes 134 3.7.1 Theoretical Analysis of Intersheath Modes 134 3.7.2 Transients on a Cross-bonded Cable 144 3.7.3 Earth-return Mode 159 3.7.4 Concluding Remarks 160 References 160 4 Cable Modeling for Transient Simulations 163 Teruo Ohno and Akihiro Ametani 4.1 Sequence Impedances Using a Lumped PI-circuit Model 163 4.1.1 Solidly Bonded Cables 163 4.1.2 Cross-bonded Cables 167 4.1.3 Derivation of Sequence Impedance Formulas 168 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations 174 4.3 Dommel Model 175 4.4 Semlyen Frequency-dependent Model 176 4.4.1 Semlyen Model 177 4.4.2 Linear Model 178 4.5 Marti Model 178 4.6 Latest Frequency-dependent Models 179 4.6.1 Vector Fitting 179 4.6.2 Frequency Region Partitioning Algorithm 181 References 182 5 Basic Characteristics of Transients on Single-phase Cables 185 Akihiro Ametani 5.1 Single-core Coaxial (SC) Cable 185 5.1.1 Experimental Observations 185 5.1.2 EMTP Simulations 187 5.1.3 Theoretical Analysis 192 5.1.4 Analytical Evaluation of Parameters 203 5.1.5 Analytical Calculation of Transient Voltages 204 5.1.6 Concluding Remarks 211 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity 212 5.2.1 Model Circuit for the EMTP Simulation 212 5.2.2 Simulation Results for Step-function Voltage Source 214 5.2.3 FDTD Simulation 218 5.2.4 Theoretical Analysis 218 5.2.5 Concluding Remarks 224 5.3 Effect of a Semiconducting Layer on a Transient 225 5.3.1 StepFunctionVoltageAppliedtoa2kmCable 225 5.3.2 5 × 70
s Impulse Voltage Applied to a 40 km Cable 226 References 227 6 Transient on Three-phase Cables in a Real System 229 Akihiro Ametani 6.1 Cross-bonded Cable 229 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable 229 6.1.2 Effect of Cross-bonding 229 6.1.3 Effect of Various Parameters 232 6.1.4 Homogeneous Model (See Section 3.5.3) 237 6.1.5 PAI-circuit Model 239 6.2 Tunnel-installed 275 kV Cable 240 6.2.1 Cable Configuration 240 6.2.2 Effect of Geometrical Parameters on Wave Propagation 241 6.2.3 Field Test on 275 kV XLPE Cable 243 6.2.4 Concluding Remarks 249 6.3 Cable Installed Underneath a Bridge 252 6.3.1 Model System 252 6.3.2 Effect of an Overhead Cable and a Bridge 253 6.3.3 Effect of Overhead Lines on a Cable Transient 257 6.4 Cable Modeling in EMTP Simulations 262 6.4.1 Marti's and Dommel's Cable Models 262 6.4.2 Homogeneous Cable Model (See Section 3.5.3) 265 6.4.3 Effect of Tunnel-installed Cable 265 6.5 Pipe-enclosed Type (PT) Cable 266 6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable 266 6.5.2 Measured Results 267 6.5.3 FTP Simulation 269 6.6 Gas-insulated Substation (GIS) - Overhead Cables 274 6.6.1 Basic Characteristic of an Overhead Cable 274 6.6.2 Effect of Spacer in a Bus 275 6.6.3 Three-phase Underground Gas-insulated Line 281 6.6.4 Switching Surges in a 500 kV GIS 282 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable 284 Appendix 6.A 293 Appendix 6.B 295 References 295 7 Examples of Cable System Transients 297 Teruo Ohno 7.1 Reactive Power Compensation 297 7.2 Temporary Overvoltages 298 7.2.1 Series Resonance Overvoltage 298 7.2.2 Parallel Resonance Overvoltage 310 7.2.3 Overvoltage Caused by System Islanding 314 7.3 Slow-front Overvoltages 317 7.3.1 Line Energization Overvoltages from a Lumped Source 317 7.3.2 Line Energization Overvoltages from a Complex Source 329 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages 332 7.4 Leading Current Interruption 341 7.5 Zero-missing Phenomenon 342 7.5.1 Zero-missing Phenomenon and Countermeasures 342 7.5.2 Sequential Switching 344 7.6 Cable Discharge 346 References 347 8 Cable Transient in Distributed Generation System 351 Naoto Nagaoka 8.1 Transient Simulation of Wind Farm 351 8.1.1 Circuit Diagram 351 8.1.2 Cable Model and Dominant Frequency 352 8.1.3 Data for Cable Parameters 354 8.1.4 EMTP Data Structure 359 8.1.5 Results of Pre-calculation 363 8.1.6 Cable Energization 364 8.2 Transients in a Solar Plant 374 8.2.1 Modeling of Solar Plant 374 8.2.2 Simulated Results 379 References 388 Index 391
e 91 3.4.3 Sheath Thickness d 91 3.4.4 Sheath Resistivity
s 91 3.4.5 Arrangement of a Three-phase SC Cable 93 3.5 Cross-bonded Cable 94 3.5.1 Introduction of Cross-bonded Cable 94 3.5.2 Theoretical Formulation of a Cross-bonded Cable 95 3.5.3 Homogeneous Model of a Cross-bonded Cable 102 3.5.4 Difference between Tunnel-installed and Buried Cables 105 3.6 PT Cable 114 3.6.1 Introduction of PT Cable 114 3.6.2 PT Cable with Finite-pipe Thickness 115 3.6.3 Effect of Eccentricity of Inner Conductor 128 3.6.4 Effect of the Permittivity of the Pipe Inner Insulator 133 3.6.5 Overhead PT Cable 133 3.7 Propagation Characteristics of Intersheath Modes 134 3.7.1 Theoretical Analysis of Intersheath Modes 134 3.7.2 Transients on a Cross-bonded Cable 144 3.7.3 Earth-return Mode 159 3.7.4 Concluding Remarks 160 References 160 4 Cable Modeling for Transient Simulations 163 Teruo Ohno and Akihiro Ametani 4.1 Sequence Impedances Using a Lumped PI-circuit Model 163 4.1.1 Solidly Bonded Cables 163 4.1.2 Cross-bonded Cables 167 4.1.3 Derivation of Sequence Impedance Formulas 168 4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations 174 4.3 Dommel Model 175 4.4 Semlyen Frequency-dependent Model 176 4.4.1 Semlyen Model 177 4.4.2 Linear Model 178 4.5 Marti Model 178 4.6 Latest Frequency-dependent Models 179 4.6.1 Vector Fitting 179 4.6.2 Frequency Region Partitioning Algorithm 181 References 182 5 Basic Characteristics of Transients on Single-phase Cables 185 Akihiro Ametani 5.1 Single-core Coaxial (SC) Cable 185 5.1.1 Experimental Observations 185 5.1.2 EMTP Simulations 187 5.1.3 Theoretical Analysis 192 5.1.4 Analytical Evaluation of Parameters 203 5.1.5 Analytical Calculation of Transient Voltages 204 5.1.6 Concluding Remarks 211 5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity 212 5.2.1 Model Circuit for the EMTP Simulation 212 5.2.2 Simulation Results for Step-function Voltage Source 214 5.2.3 FDTD Simulation 218 5.2.4 Theoretical Analysis 218 5.2.5 Concluding Remarks 224 5.3 Effect of a Semiconducting Layer on a Transient 225 5.3.1 StepFunctionVoltageAppliedtoa2kmCable 225 5.3.2 5 × 70
s Impulse Voltage Applied to a 40 km Cable 226 References 227 6 Transient on Three-phase Cables in a Real System 229 Akihiro Ametani 6.1 Cross-bonded Cable 229 6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable 229 6.1.2 Effect of Cross-bonding 229 6.1.3 Effect of Various Parameters 232 6.1.4 Homogeneous Model (See Section 3.5.3) 237 6.1.5 PAI-circuit Model 239 6.2 Tunnel-installed 275 kV Cable 240 6.2.1 Cable Configuration 240 6.2.2 Effect of Geometrical Parameters on Wave Propagation 241 6.2.3 Field Test on 275 kV XLPE Cable 243 6.2.4 Concluding Remarks 249 6.3 Cable Installed Underneath a Bridge 252 6.3.1 Model System 252 6.3.2 Effect of an Overhead Cable and a Bridge 253 6.3.3 Effect of Overhead Lines on a Cable Transient 257 6.4 Cable Modeling in EMTP Simulations 262 6.4.1 Marti's and Dommel's Cable Models 262 6.4.2 Homogeneous Cable Model (See Section 3.5.3) 265 6.4.3 Effect of Tunnel-installed Cable 265 6.5 Pipe-enclosed Type (PT) Cable 266 6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable 266 6.5.2 Measured Results 267 6.5.3 FTP Simulation 269 6.6 Gas-insulated Substation (GIS) - Overhead Cables 274 6.6.1 Basic Characteristic of an Overhead Cable 274 6.6.2 Effect of Spacer in a Bus 275 6.6.3 Three-phase Underground Gas-insulated Line 281 6.6.4 Switching Surges in a 500 kV GIS 282 6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable 284 Appendix 6.A 293 Appendix 6.B 295 References 295 7 Examples of Cable System Transients 297 Teruo Ohno 7.1 Reactive Power Compensation 297 7.2 Temporary Overvoltages 298 7.2.1 Series Resonance Overvoltage 298 7.2.2 Parallel Resonance Overvoltage 310 7.2.3 Overvoltage Caused by System Islanding 314 7.3 Slow-front Overvoltages 317 7.3.1 Line Energization Overvoltages from a Lumped Source 317 7.3.2 Line Energization Overvoltages from a Complex Source 329 7.3.3 Analysis of Statistical Distribution of Energization Overvoltages 332 7.4 Leading Current Interruption 341 7.5 Zero-missing Phenomenon 342 7.5.1 Zero-missing Phenomenon and Countermeasures 342 7.5.2 Sequential Switching 344 7.6 Cable Discharge 346 References 347 8 Cable Transient in Distributed Generation System 351 Naoto Nagaoka 8.1 Transient Simulation of Wind Farm 351 8.1.1 Circuit Diagram 351 8.1.2 Cable Model and Dominant Frequency 352 8.1.3 Data for Cable Parameters 354 8.1.4 EMTP Data Structure 359 8.1.5 Results of Pre-calculation 363 8.1.6 Cable Energization 364 8.2 Transients in a Solar Plant 374 8.2.1 Modeling of Solar Plant 374 8.2.2 Simulated Results 379 References 388 Index 391