Precise measurements of the calcium (Ca) isotopes have provided constraints on Ca cycling at global and local scales, and quantified rates of carbonate diagenesis in marine sedimentary systems. Key to applying Ca isotopes as a geochemical tracer of Ca cycling, carbonate (bio)mineralization, and diagenesis is an understanding of the impact of multiple factors potentially impacting Ca isotopes in the rock record. These factors include variations in stable isotopic fractionation factors, the influence of local-scale Ca cycling on Ca isotopic gradients in carbonate settings, carbonate dissolution and reprecipitation, and the relationship between the Ca isotopic composition of seawater and mineral phases that record the secular evolution of seawater chemistry.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.