The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.
The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include:
- electronic transport theory based on the test-particle and correlation-function concepts;
- scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature;
- two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.
The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include:
- electronic transport theory based on the test-particle and correlation-function concepts;
- scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature;
- two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.