Catalytic Cascade Reactions (eBook, PDF)
Redaktion: Xu, Peng-Fei; Wang, Wei
Alle Infos zum eBook verschenken
Catalytic Cascade Reactions (eBook, PDF)
Redaktion: Xu, Peng-Fei; Wang, Wei
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Demonstrates the advantages of catalytic cascade reactions for synthesizing natural products and pharmaceuticals Riding the wave of green chemistry, catalytic cascade reactions have become one of the most active research areas in organic synthesis. During a cascade reaction, just one reaction solvent, one workup procedure, and one purification step are needed, thus significantly increasing synthetic efficiency. Featuring contributions from an international team of pioneers in the field, Catalytic Cascade Reactions demonstrates the versatility and application of these reactions for synthesizing…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 26.14MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 440
- Erscheinungstermin: 2. Oktober 2013
- Englisch
- ISBN-13: 9781118356630
- Artikelnr.: 39621938
- Verlag: John Wiley & Sons
- Seitenzahl: 440
- Erscheinungstermin: 2. Oktober 2013
- Englisch
- ISBN-13: 9781118356630
- Artikelnr.: 39621938
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface xiii
1 Amine-Catalyzed Cascade Reactions 1
Aiguo Song and Wei Wang
1.1 Introduction, 2
1.2 Enamine-Activated Cascade Reactions, 3
1.2.1 Enamine-Enamine Cascades, 3
1.2.2 Enamine-Iminium Cascades, 8
1.2.3 Enamine Catalysis Cyclization, 19
1.3 Iminium-Initiated Cascade Reactions, 21
1.3.1 Design of Iminium-Enamine Cascade Reactions, 21
1.3.2 Iminium-Activated Diels-Alder Reactions, 22
1.3.3 Iminium-Activated Sequential [4 + 2] Reactions, 24
1.3.4 Iminium-Activated [3 + 2] Reactions, 25
1.3.5 Iminium-Activated Sequential [3 + 2] Reactions, 27
1.3.6 Iminium-Activated [2 + 1] Reactions, 30
1.3.7 Iminium-Activated Multicomponent Reactions, 35
1.3.8 Iminium-Activated [3 + 3] Reactions, 37
1.4 Cycle-Specific Catalysis Cascades, 42
1.5 Other Strategies, 45
1.6 Summary and Outlook, 46
References, 46
2 Brønsted Acid-Catalyzed Cascade Reactions 53
Jun Jiang and Liu-Zhu Gong
2.1 Introduction, 54
2.2 Protonic Acid-Catalyzed Cascade Reactions, 55
2.2.1 Mannich Reaction, 55
2.2.2 Pictect-Spengler Reaction, 56
2.2.3 Biginelli Reaction, 58
2.2.4 Povarov Reaction, 59
2.2.5 Reduction Reaction, 60
2.2.6 1,3-Dipolar Cycloaddition, 61
2.2.7 Darzen Reaction, 65
2.2.8 Acyclic Aminal and Hemiaminal Synthesis, 66
2.2.9 Rearrangement Reaction, 67
2.2.10 a,b-Unsaturated Imine-Involved Cyclization Reaction, 69
2.2.11 Alkylation Reaction, 69
2.2.12 Desymmetrization Reaction, 70
2.2.13 Halocyclization, 71
2.2.14 Redox Reaction, 72
2.2.15 Isocyanide-Involved Multicomponent Reaction, 73
2.2.16 Other Protonic Acid-Catalyzed Cascade Reactions, 75
2.3 Chiral Thiourea (Urea)-Catalyzed Cascade Reactions, 75
2.3.1 Neutral Activation, 76
2.3.2 Anion-Binding Catalysis, 99
2.4 Brønsted Acid and Transition Metal Cooperatively Catalyzed Cascade
Reactions, 104
2.4.1 Dual Catalysis, 105
2.4.2 Cascade Catalysis, 108
2.5 Conclusions, 116
References, 117
3 Application of Organocatalytic Cascade Reactions in Natural Product
Synthesis and Drug Discovery 123
Yao Wang and Peng-Fei Xu
3.1 Introduction, 123
3.2 Amine-Catalyzed Cascade Reactions in Natural Product Synthesis, 125
3.2.1 Iminium-Ion-Catalyzed Cascade Reactions in Natural Product Synthesis,
125
3.2.2 Cycle-Specific Cascade Catalysis in Natural Product Synthesis, 129
3.3 Brønsted Acid-Catalyzed Cascade Reactions in Natural Product Synthesis,
137
3.4 Bifunctional Base/Brønsted Acid-Catalyzed Cascade Reactions in Natural
Product Synthesis, 139
3.5 Summary and Outlook, 140
References, 142
4 Gold-Catalyzed Cascade Reactions 145
Yanzhao Wang and Liming Zhang
4.1 Introduction, 145
4.2 Cascade Reactions of Alkynes, 147
4.2.1 Cascade Reactions of Enynes, 147
4.2.2 Cascade Reactions of Propargyl Carboxylates, 156
4.2.3 Cascade Reactions of ortho-Substituted Arylalkynes, 161
4.2.4 Cascade Reactions of Other Alkynes, 165
4.3 Cascade Reactions of Allenes, 170
4.4 Cascade Reactions of Alkenes and Cyclopropenes, 173
4.5 Closing Remarks, 174
References, 174
5 Cascade Reactions Catalyzed by Ruthenium, Iron, Iridium, Rhodium, and
Copper 179
Yanguang Wang and Ping Lu
5.1 Introduction, 179
5.2 Ruthenium-Catalyzed Transformations, 180
5.3 Iron-Catalyzed Transformations, 185
5.4 Iridium-Catalyzed Transformations, 191
5.5 Rhodium-Catalyzed Transformations, 194
5.6 Copper-Catalyzed Transformations, 202
5.7 Miscellaneous Catalytic Reactions, 215
5.8 Summary, 219
References, 219
6 Palladium-Catalyzed Cascade Reactions of Alkenes, Alkynes, and Allenes
225
Hongyin Gao and Junliang Zhang
6.1 Introduction, 226
6.2 Cascade Reactions Involving Alkenes, 226
6.2.1 Double Mizoroki-Heck Reaction Cascade, 226
6.2.2 Cascade Heck Reaction/C-H Activation, 227
6.2.3 Cascade Heck Reaction/Reduction/Cyclization, 230
6.2.4 Cascade Heck Reaction/Carbonylation, 231
6.2.5 Cascade Heck Reaction/Suzuki Coupling, 232
6.2.6 Cascade Amino-/Oxopalladation/Carbopalladation Reaction, 234
6.3 Cascade Reactions Involving Alkynes, 237
6.3.1 Cascade Heck Reactions, 238
6.3.2 Cascade Heck/Suzuki Coupling, 238
6.3.3 Cationic Palladium(II)-Catalyzed Cascade Reactions, 239
6.3.4 Cascade Heck Reaction/Stille Coupling, 241
6.3.5 Cascade Heck/Sonogashira Coupling, 243
6.3.6 Cascade Sonogashira Coupling-Cyclization, 244
6.3.7 Cascade Heck and C-H Bond Functionalization, 247
6.3.8 Cascade Reactions Initiated by Oxopalladation, 253
6.3.9 Cascade Reactions Initiated by Aminopalladation, 256
6.3.10 Cascade Reactions Initiated by Halopalladation or
Acetoxypalladation, 259
6.3.11 Cascade Reactions of 2-(1-Alkynyl)-alk-2-en-1-ones, 263
6.3.12 Cascade Reactions of Propargylic Derivatives, 263
6.4 Cascade Reactions Involving Allenes, 264
6.4.1 Cascade Reactions of Monoallenes, 264
6.4.2 Cross-Coupling Cyclization of Two Different Allenes, 274
6.5 Summary and Outlook, 276
Acknowledgments, 277
References, 277
7 Use of Transition Metal-Catalyzed Cascade Reactions in Natural Product
Synthesis and Drug Discovery 283
Peng-Fei Xu and Hao Wei
7.1 Introduction, 283
7.2 Palladium-Catalyzed Cascade Reactions in Total Synthesis, 284
7.2.1 Cross-Coupling Reactions, 284
7.2.1.1 Heck Reaction, 284
7.2.1.2 Stille Reaction, 291
7.2.1.3 Suzuki Coupling Reaction, 297
7.2.2 Tsuji-Trost Reaction, 301
7.2.3 Other Palladium-Catalyzed Cascade Reactions in Total Synthesis, 303
7.3 Ruthenium-Catalyzed Cascade Reactions in Total Synthesis, 305
7.4 Gold-and Platinum-Catalyzed Cascade Reactions in Organic Reactions, 318
7.5 Copper-and Rhodium-Catalyzed Cascade Reactions in Organic Synthesis,
322
7.6 Summary, 326
References, 326
8 Engineering Mono-and Multifunctional Nanocatalysts for Cascade Reactions
333
Hexing Li and Fang Zhang
8.1 Introduction, 334
8.2 Heterogeneous Monofunctional Nanocatalysts, 335
8.2.1 Metal-Based Monofunctional Nanocatalysts, 335
8.2.2 Metal Oxide-Based Monofunctional Nanocatalysts, 340
8.2.3 Orgamometallic-Based Monofunctional Nanocatalysts, 340
8.2.4 Graphene Oxide-Based Monofunctional Nanocatalysts, 343
8.3 Heterogeneous Multifunctional Nanocatalysts, 344
8.3.1 Acid-Base Combined Multifunctional Nanocatalysts, 344
8.3.2 Metal-Base Combined Multifunctional Nanocatalysts, 349
8.3.3 Organometallic-Base Combined Multifunctional Nanocatalysts, 349
8.3.4 Binary Organometallic-Based Multifunctional Nanocatalysts, 350
8.3.5 Binary Metal-Based Multifunctional Nanocatalysts, 352
8.3.6 Metal-Metal Oxide Combined Multifunctional Nanocatalysts, 353
8.3.7 Organocatalyst-Acid Combined Multifunctional Nanocatalysts, 353
8.3.8 Acid-Base-Metal Combined Multifunctional Nanocatalyst, 356
8.3.9 Triple Enzyme-Based Multifunctional Nanocatalysts, 356
8.4 Conclusions and Perspectives, 359
References, 360
9 Multiple-Catalyst-Promoted Cascade Reactions 363
Peng-Fei Xu and Jun-Bing Ling
9.1 Introduction, 363
9.2 Multiple Metal Catalyst-Promoted Cascade Reactions, 364
9.2.1 Catalytic Systems Involving Palladium, 365
9.2.2 Catalytic Systems Involving Other Metals, 368
9.3 Multiple Organocatalyst-Promoted Cascade Reactions, 370
9.3.1 Catalytic Systems Combining Multiple Amine Catalysts, 371
9.3.2 Catalytic Systems Combining Amine Catalysts and Nucleophilic
Carbenes, 380
9.3.3 Catalytic Systems Combining Amine and Hydrogen-Bonding Donor
Catalysts, 385
9.3.4 Catalytic Systems Involving Other Organocatalysts, 390
9.4 Metal/Organic Binary Catalytic System-Promoted Cascade Reactions, 394
9.4.1 Catalytic Systems Combining Secondary Amine and Metal Catalysts, 394
9.4.2 Catalytic Systems Combining Brønsted Acid and Metal Catalysts, 404
9.4.3 Catalytic Systems Combining Hydrogen-Bonding Donor and Metal
Catalysts, 411
9.4.4 Catalytic Systems Combining Other Organo-and Metal Catalysts, 413
9.5 Summary and Outlook, 415
References, 415
Index 419
Preface xiii
1 Amine-Catalyzed Cascade Reactions 1
Aiguo Song and Wei Wang
1.1 Introduction, 2
1.2 Enamine-Activated Cascade Reactions, 3
1.2.1 Enamine-Enamine Cascades, 3
1.2.2 Enamine-Iminium Cascades, 8
1.2.3 Enamine Catalysis Cyclization, 19
1.3 Iminium-Initiated Cascade Reactions, 21
1.3.1 Design of Iminium-Enamine Cascade Reactions, 21
1.3.2 Iminium-Activated Diels-Alder Reactions, 22
1.3.3 Iminium-Activated Sequential [4 + 2] Reactions, 24
1.3.4 Iminium-Activated [3 + 2] Reactions, 25
1.3.5 Iminium-Activated Sequential [3 + 2] Reactions, 27
1.3.6 Iminium-Activated [2 + 1] Reactions, 30
1.3.7 Iminium-Activated Multicomponent Reactions, 35
1.3.8 Iminium-Activated [3 + 3] Reactions, 37
1.4 Cycle-Specific Catalysis Cascades, 42
1.5 Other Strategies, 45
1.6 Summary and Outlook, 46
References, 46
2 Brønsted Acid-Catalyzed Cascade Reactions 53
Jun Jiang and Liu-Zhu Gong
2.1 Introduction, 54
2.2 Protonic Acid-Catalyzed Cascade Reactions, 55
2.2.1 Mannich Reaction, 55
2.2.2 Pictect-Spengler Reaction, 56
2.2.3 Biginelli Reaction, 58
2.2.4 Povarov Reaction, 59
2.2.5 Reduction Reaction, 60
2.2.6 1,3-Dipolar Cycloaddition, 61
2.2.7 Darzen Reaction, 65
2.2.8 Acyclic Aminal and Hemiaminal Synthesis, 66
2.2.9 Rearrangement Reaction, 67
2.2.10 a,b-Unsaturated Imine-Involved Cyclization Reaction, 69
2.2.11 Alkylation Reaction, 69
2.2.12 Desymmetrization Reaction, 70
2.2.13 Halocyclization, 71
2.2.14 Redox Reaction, 72
2.2.15 Isocyanide-Involved Multicomponent Reaction, 73
2.2.16 Other Protonic Acid-Catalyzed Cascade Reactions, 75
2.3 Chiral Thiourea (Urea)-Catalyzed Cascade Reactions, 75
2.3.1 Neutral Activation, 76
2.3.2 Anion-Binding Catalysis, 99
2.4 Brønsted Acid and Transition Metal Cooperatively Catalyzed Cascade
Reactions, 104
2.4.1 Dual Catalysis, 105
2.4.2 Cascade Catalysis, 108
2.5 Conclusions, 116
References, 117
3 Application of Organocatalytic Cascade Reactions in Natural Product
Synthesis and Drug Discovery 123
Yao Wang and Peng-Fei Xu
3.1 Introduction, 123
3.2 Amine-Catalyzed Cascade Reactions in Natural Product Synthesis, 125
3.2.1 Iminium-Ion-Catalyzed Cascade Reactions in Natural Product Synthesis,
125
3.2.2 Cycle-Specific Cascade Catalysis in Natural Product Synthesis, 129
3.3 Brønsted Acid-Catalyzed Cascade Reactions in Natural Product Synthesis,
137
3.4 Bifunctional Base/Brønsted Acid-Catalyzed Cascade Reactions in Natural
Product Synthesis, 139
3.5 Summary and Outlook, 140
References, 142
4 Gold-Catalyzed Cascade Reactions 145
Yanzhao Wang and Liming Zhang
4.1 Introduction, 145
4.2 Cascade Reactions of Alkynes, 147
4.2.1 Cascade Reactions of Enynes, 147
4.2.2 Cascade Reactions of Propargyl Carboxylates, 156
4.2.3 Cascade Reactions of ortho-Substituted Arylalkynes, 161
4.2.4 Cascade Reactions of Other Alkynes, 165
4.3 Cascade Reactions of Allenes, 170
4.4 Cascade Reactions of Alkenes and Cyclopropenes, 173
4.5 Closing Remarks, 174
References, 174
5 Cascade Reactions Catalyzed by Ruthenium, Iron, Iridium, Rhodium, and
Copper 179
Yanguang Wang and Ping Lu
5.1 Introduction, 179
5.2 Ruthenium-Catalyzed Transformations, 180
5.3 Iron-Catalyzed Transformations, 185
5.4 Iridium-Catalyzed Transformations, 191
5.5 Rhodium-Catalyzed Transformations, 194
5.6 Copper-Catalyzed Transformations, 202
5.7 Miscellaneous Catalytic Reactions, 215
5.8 Summary, 219
References, 219
6 Palladium-Catalyzed Cascade Reactions of Alkenes, Alkynes, and Allenes
225
Hongyin Gao and Junliang Zhang
6.1 Introduction, 226
6.2 Cascade Reactions Involving Alkenes, 226
6.2.1 Double Mizoroki-Heck Reaction Cascade, 226
6.2.2 Cascade Heck Reaction/C-H Activation, 227
6.2.3 Cascade Heck Reaction/Reduction/Cyclization, 230
6.2.4 Cascade Heck Reaction/Carbonylation, 231
6.2.5 Cascade Heck Reaction/Suzuki Coupling, 232
6.2.6 Cascade Amino-/Oxopalladation/Carbopalladation Reaction, 234
6.3 Cascade Reactions Involving Alkynes, 237
6.3.1 Cascade Heck Reactions, 238
6.3.2 Cascade Heck/Suzuki Coupling, 238
6.3.3 Cationic Palladium(II)-Catalyzed Cascade Reactions, 239
6.3.4 Cascade Heck Reaction/Stille Coupling, 241
6.3.5 Cascade Heck/Sonogashira Coupling, 243
6.3.6 Cascade Sonogashira Coupling-Cyclization, 244
6.3.7 Cascade Heck and C-H Bond Functionalization, 247
6.3.8 Cascade Reactions Initiated by Oxopalladation, 253
6.3.9 Cascade Reactions Initiated by Aminopalladation, 256
6.3.10 Cascade Reactions Initiated by Halopalladation or
Acetoxypalladation, 259
6.3.11 Cascade Reactions of 2-(1-Alkynyl)-alk-2-en-1-ones, 263
6.3.12 Cascade Reactions of Propargylic Derivatives, 263
6.4 Cascade Reactions Involving Allenes, 264
6.4.1 Cascade Reactions of Monoallenes, 264
6.4.2 Cross-Coupling Cyclization of Two Different Allenes, 274
6.5 Summary and Outlook, 276
Acknowledgments, 277
References, 277
7 Use of Transition Metal-Catalyzed Cascade Reactions in Natural Product
Synthesis and Drug Discovery 283
Peng-Fei Xu and Hao Wei
7.1 Introduction, 283
7.2 Palladium-Catalyzed Cascade Reactions in Total Synthesis, 284
7.2.1 Cross-Coupling Reactions, 284
7.2.1.1 Heck Reaction, 284
7.2.1.2 Stille Reaction, 291
7.2.1.3 Suzuki Coupling Reaction, 297
7.2.2 Tsuji-Trost Reaction, 301
7.2.3 Other Palladium-Catalyzed Cascade Reactions in Total Synthesis, 303
7.3 Ruthenium-Catalyzed Cascade Reactions in Total Synthesis, 305
7.4 Gold-and Platinum-Catalyzed Cascade Reactions in Organic Reactions, 318
7.5 Copper-and Rhodium-Catalyzed Cascade Reactions in Organic Synthesis,
322
7.6 Summary, 326
References, 326
8 Engineering Mono-and Multifunctional Nanocatalysts for Cascade Reactions
333
Hexing Li and Fang Zhang
8.1 Introduction, 334
8.2 Heterogeneous Monofunctional Nanocatalysts, 335
8.2.1 Metal-Based Monofunctional Nanocatalysts, 335
8.2.2 Metal Oxide-Based Monofunctional Nanocatalysts, 340
8.2.3 Orgamometallic-Based Monofunctional Nanocatalysts, 340
8.2.4 Graphene Oxide-Based Monofunctional Nanocatalysts, 343
8.3 Heterogeneous Multifunctional Nanocatalysts, 344
8.3.1 Acid-Base Combined Multifunctional Nanocatalysts, 344
8.3.2 Metal-Base Combined Multifunctional Nanocatalysts, 349
8.3.3 Organometallic-Base Combined Multifunctional Nanocatalysts, 349
8.3.4 Binary Organometallic-Based Multifunctional Nanocatalysts, 350
8.3.5 Binary Metal-Based Multifunctional Nanocatalysts, 352
8.3.6 Metal-Metal Oxide Combined Multifunctional Nanocatalysts, 353
8.3.7 Organocatalyst-Acid Combined Multifunctional Nanocatalysts, 353
8.3.8 Acid-Base-Metal Combined Multifunctional Nanocatalyst, 356
8.3.9 Triple Enzyme-Based Multifunctional Nanocatalysts, 356
8.4 Conclusions and Perspectives, 359
References, 360
9 Multiple-Catalyst-Promoted Cascade Reactions 363
Peng-Fei Xu and Jun-Bing Ling
9.1 Introduction, 363
9.2 Multiple Metal Catalyst-Promoted Cascade Reactions, 364
9.2.1 Catalytic Systems Involving Palladium, 365
9.2.2 Catalytic Systems Involving Other Metals, 368
9.3 Multiple Organocatalyst-Promoted Cascade Reactions, 370
9.3.1 Catalytic Systems Combining Multiple Amine Catalysts, 371
9.3.2 Catalytic Systems Combining Amine Catalysts and Nucleophilic
Carbenes, 380
9.3.3 Catalytic Systems Combining Amine and Hydrogen-Bonding Donor
Catalysts, 385
9.3.4 Catalytic Systems Involving Other Organocatalysts, 390
9.4 Metal/Organic Binary Catalytic System-Promoted Cascade Reactions, 394
9.4.1 Catalytic Systems Combining Secondary Amine and Metal Catalysts, 394
9.4.2 Catalytic Systems Combining Brønsted Acid and Metal Catalysts, 404
9.4.3 Catalytic Systems Combining Hydrogen-Bonding Donor and Metal
Catalysts, 411
9.4.4 Catalytic Systems Combining Other Organo-and Metal Catalysts, 413
9.5 Summary and Outlook, 415
References, 415
Index 419