100,95 €
100,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
100,95 €
100,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
Als Download kaufen
100,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
Jetzt verschenken
100,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
  • Format: PDF

As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of cavitation bubbles, generated by either ultrasound

Produktbeschreibung
As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of cavitation bubbles, generated by either ultrasound

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Sivakumar Manickam is a professor at the Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia Campus. He specializes in process engineering of nanomaterials, especially nanopharmaceuticals, and has worked in the area of ultrasound and hydrodynamic cavitation since 1997. He also heads the Manufacturing and Industrial Processes Research Division and is the coordinator of the Centre for Nanotechnology and Advanced Materials. Prof. Manickam is also the recipient of the JSPS fellowship, Japan; the Fellow of Higher Education Academy, UK; and member of the Institute of Nanotechnology (IoN), UK. His research group focuses on the process development of cavitation-based reactors toward technologically important nanomaterials. Muthupandian Ashokkumar is a professor at the School of Chemistry, University of Melbourne, Australia. He is a physical chemist who specializes in sonochemistry. He has developed a number of novel techniques to characterize acoustic cavitation bubbles and has made major contributions of applied sonochemistry to the food and dairy industry. Prof. Ashokkumar's recent research involves the ultrasonic synthesis of functional nano- and biomaterials, including protein microspheres that can be used in diagnostic and therapeutic medicine. He is a Fellow of the Royal Australian Chemical Institute and recipient of the Grimwade Prize in Industrial Chemistry.