137,95 €
137,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
69 °P sammeln
137,95 €
137,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
69 °P sammeln
Als Download kaufen
137,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
69 °P sammeln
Jetzt verschenken
137,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
69 °P sammeln
  • Format: PDF

Even though life expectancy increased in the last decades, ageing has been considered a strong risk factor for age-related diseases, disability and death. The further understanding of cellular and molecular aspects of ageing could predict the onset of diseases in advance, prevent functional decline and identify targets for interventions focused in healthy ageing.
The hypothesis that organismal ageing and dysfunction is influenced by the accumulation of senescent cells had origin in Hayflick and Moorhead results from cultured human fibroblasts. It was shown that fibroblasts presented a
…mehr

Produktbeschreibung
Even though life expectancy increased in the last decades, ageing has been considered a strong risk factor for age-related diseases, disability and death. The further understanding of cellular and molecular aspects of ageing could predict the onset of diseases in advance, prevent functional decline and identify targets for interventions focused in healthy ageing.

The hypothesis that organismal ageing and dysfunction is influenced by the accumulation of senescent cells had origin in Hayflick and Moorhead results from cultured human fibroblasts. It was shown that fibroblasts presented a limited capacity for proliferation reaching thus the state of irreversible growth arrest (replicative senescence). In 2011, van Deusen et al. showed that p16Ink4a accumulation was associated with premature ageing in a mouse model and the inactivation of the p16Ink4a gene mitigated the ageing phenotype. Thus, the cell cycle arrest due to the expression of p16Ink4a and p21CIP (cell cycle inhibitors) is the main characteristic of senescence. In addition to cellular senescence, the hallmarks of ageing include genomic instability, telomere shortening , epigenetic alterations, loss of proteostasis, deregulated nutrient-sensing, mitochondrial dysfunction, stem cell exhaustion, altered intercellular communication, and a pro-inflammatory senescence-associated secretory phenotype (SASP). In this book, researchers will comprehensively discuss relevant changes occurring at cellular and molecular levels (human and animal models) based on the hallmarks of ageing. The impact of lifestyle and benefits of physical activity and nutrition will be also discussed. Unravelling cellular and molecular aspects of ageing is crucial for the unanswered questions about ageing and for guiding interventions such as changes in lifestyle, senolytic (kills senescent cells), and senomorphic (interrupts deleterious intercellular communication) therapies.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Valquiria Bueno has a background in Biology and a Post Doc in Immunology by The University of Oxford. As an Associate Professor at UNIFESP since 2006 and she has been working in the Ageing issue for more than one decade. In association with researchers of the Ageing field around the world she has published two other books: "The Ageing Immune System and Health" edited by Valquiria Bueno, Janet M Lord and Thomas Jackson and "Healthy Longevity and Immune System" edited by Valquiria Bueno and Graham Pawelec. Her main interest is on how the ageing process interferes with the immune system function and what are the consequences of it for the older individuals. She has been supported with Brazilian (FAPESP, CAPES, CNPq), British Council and Newton Fund grants for the study of the Ageing process and changes occurring in he Immune System.