R. Sivaramakrishnan
Certain Number-Theoretic Episodes In Algebra, Second Edition (eBook, ePUB)
172,95 €
172,95 €
inkl. MwSt.
Sofort per Download lieferbar
86 °P sammeln
172,95 €
Als Download kaufen
172,95 €
inkl. MwSt.
Sofort per Download lieferbar
86 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
172,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
86 °P sammeln
R. Sivaramakrishnan
Certain Number-Theoretic Episodes In Algebra, Second Edition (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.79MB
Andere Kunden interessierten sich auch für
- R. SivaramakrishnanCertain Number-Theoretic Episodes In Algebra, Second Edition (eBook, PDF)172,95 €
- Jana JureckováRobust Statistical Methods with R, Second Edition (eBook, ePUB)44,95 €
- Joseph K. BlitzsteinIntroduction to Probability, Second Edition (eBook, ePUB)72,95 €
- Roy M. HowardA Signal Theoretic Introduction to Random Processes (eBook, ePUB)108,99 €
- George G. RoussasAn Introduction to Measure-Theoretic Probability (eBook, ePUB)58,95 €
- Richard DurrettStochastic Calculus (eBook, ePUB)52,95 €
- Maria L. RizzoStatistical Computing with R, Second Edition (eBook, ePUB)72,95 €
-
-
-
The book attempts to point out the interconnections between number theory and algebra with a view to making a student understand certain basic concepts in the two areas forming the subject-matter of the book.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 19. März 2019
- Englisch
- ISBN-13: 9781351023320
- Artikelnr.: 55876411
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 19. März 2019
- Englisch
- ISBN-13: 9781351023320
- Artikelnr.: 55876411
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Sivaramakrishnan Ramakrishna Ayyar has served a few educational institutions in Kerala as a math-teacher. In particular, he has served the university of Calicut, Kerala-673635 during the years 1977-1996.
A monograph entitled: 'Classical Theory of Arithmetic Functions' (Marcel Dekker (1989)) was published during his visitorship (1987-88) at the University of Kansas, Lawrence, KS66045, U.S.A. He has also visited Mangalore University (1996-1997), Mangalagangotri, Mangalore-574199. He holds an Emeritus membership of
American Mathematical Society, since 2008. His e-mail address is: rsjreeg@gmail.com.
The first edition of this book was published in the year 2006 (Chapman & Hall/CRC (Tayor & Francis Group)) when he could receive a Government of India Grant under 'Utilization of Services of Retired Scientists' (USERS) scheme to work at the University of Calicut during the two-year period April, 2000-March, 2002.
A monograph entitled: 'Classical Theory of Arithmetic Functions' (Marcel Dekker (1989)) was published during his visitorship (1987-88) at the University of Kansas, Lawrence, KS66045, U.S.A. He has also visited Mangalore University (1996-1997), Mangalagangotri, Mangalore-574199. He holds an Emeritus membership of
American Mathematical Society, since 2008. His e-mail address is: rsjreeg@gmail.com.
The first edition of this book was published in the year 2006 (Chapman & Hall/CRC (Tayor & Francis Group)) when he could receive a Government of India Grant under 'Utilization of Services of Retired Scientists' (USERS) scheme to work at the University of Calicut during the two-year period April, 2000-March, 2002.
Section A - ELEMENTS OF THE THEORY OF NUMBERS. From Euclid to Lucas:
Elementary theorems revisited. Solutions of Congruences, Primitive Roots.
The Chinese Remainder Theorem. M¿obius inversion. Quadratic Residues.
Decomposition of a number as a sum of two or four squares. Dirichlet
Algebra of Arithmetical Functions. Modular arithmetical functions. A
generalization of Ramanujan sums. Ramanujan expansions of multiplicative
arithmetic functions. Section B - SELECTED TOPICS IN ALGEBRA. On the
uniqueness of a group of order r (r > 1). Quadratic Reciprocity in a finite
group. Commutative rings with unity. Noetherian and Artinian rings. Section
C - GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS. Dedekind domains.
Algebraic number fields. Section D - SOME ADDITIONAL TOPICS.
Vaidyanathaswamy's class-division of integers modulo r. Burnside's lemma
and a few of its applications. On cyclic codes of length n over Fq. An
Analogue of the Goldbach problem. Appendix A. Appendix B. Appendix C.
Index.
Elementary theorems revisited. Solutions of Congruences, Primitive Roots.
The Chinese Remainder Theorem. M¿obius inversion. Quadratic Residues.
Decomposition of a number as a sum of two or four squares. Dirichlet
Algebra of Arithmetical Functions. Modular arithmetical functions. A
generalization of Ramanujan sums. Ramanujan expansions of multiplicative
arithmetic functions. Section B - SELECTED TOPICS IN ALGEBRA. On the
uniqueness of a group of order r (r > 1). Quadratic Reciprocity in a finite
group. Commutative rings with unity. Noetherian and Artinian rings. Section
C - GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS. Dedekind domains.
Algebraic number fields. Section D - SOME ADDITIONAL TOPICS.
Vaidyanathaswamy's class-division of integers modulo r. Burnside's lemma
and a few of its applications. On cyclic codes of length n over Fq. An
Analogue of the Goldbach problem. Appendix A. Appendix B. Appendix C.
Index.
Section A - ELEMENTS OF THE THEORY OF NUMBERS. From Euclid to Lucas:
Elementary theorems revisited. Solutions of Congruences, Primitive Roots.
The Chinese Remainder Theorem. M¿obius inversion. Quadratic Residues.
Decomposition of a number as a sum of two or four squares. Dirichlet
Algebra of Arithmetical Functions. Modular arithmetical functions. A
generalization of Ramanujan sums. Ramanujan expansions of multiplicative
arithmetic functions. Section B - SELECTED TOPICS IN ALGEBRA. On the
uniqueness of a group of order r (r > 1). Quadratic Reciprocity in a finite
group. Commutative rings with unity. Noetherian and Artinian rings. Section
C - GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS. Dedekind domains.
Algebraic number fields. Section D - SOME ADDITIONAL TOPICS.
Vaidyanathaswamy's class-division of integers modulo r. Burnside's lemma
and a few of its applications. On cyclic codes of length n over Fq. An
Analogue of the Goldbach problem. Appendix A. Appendix B. Appendix C.
Index.
Elementary theorems revisited. Solutions of Congruences, Primitive Roots.
The Chinese Remainder Theorem. M¿obius inversion. Quadratic Residues.
Decomposition of a number as a sum of two or four squares. Dirichlet
Algebra of Arithmetical Functions. Modular arithmetical functions. A
generalization of Ramanujan sums. Ramanujan expansions of multiplicative
arithmetic functions. Section B - SELECTED TOPICS IN ALGEBRA. On the
uniqueness of a group of order r (r > 1). Quadratic Reciprocity in a finite
group. Commutative rings with unity. Noetherian and Artinian rings. Section
C - GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS. Dedekind domains.
Algebraic number fields. Section D - SOME ADDITIONAL TOPICS.
Vaidyanathaswamy's class-division of integers modulo r. Burnside's lemma
and a few of its applications. On cyclic codes of length n over Fq. An
Analogue of the Goldbach problem. Appendix A. Appendix B. Appendix C.
Index.