In the field of organic semiconductors researchers and manufacturers are faced with a wide range of potential molecules. This work presents concepts for simulation-based predictions of material characteristics starting from chemical stuctures. The focus lies on charge transport - be it in microscopic models of amorphous morphologies, lattice models or large-scale device models.
An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership.
Contents:
Organic Semiconductor Devices
Experimental Techniques
Charge Dynamics at Dierent Scales
Computational Methods
Energetics and Dispersive Transport
Correlated Energetic Landscapes
Microscopic, Stochastic and Device Simulations
Parametrization of Lattice Models
Drift-Diusion with Microscopic Link
An extensive introductory review, which also includes experimental techniques, makes this work interesting for a broad readership.
Contents:
Organic Semiconductor Devices
Experimental Techniques
Charge Dynamics at Dierent Scales
Computational Methods
Energetics and Dispersive Transport
Correlated Energetic Landscapes
Microscopic, Stochastic and Device Simulations
Parametrization of Lattice Models
Drift-Diusion with Microscopic Link
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.