88,95 €
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
88,95 €
Als Download kaufen
88,95 €
inkl. MwSt.
Sofort per Download lieferbar
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A thorough introduction to graduate classical numerical analysis, with all important topics covered rigorously.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 25.63MB
Andere Kunden interessierten sich auch für
- Rupert L. FrankSchrodinger Operators: Eigenvalues and Lieb-Thirring Inequalities (eBook, PDF)63,95 €
- Pertti MattilaRectifiability (eBook, PDF)58,95 €
- D. E. EdmundsFractional Sobolev Spaces and Inequalities (eBook, PDF)93,95 €
- Houman OwhadiOperator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization (eBook, PDF)137,95 €
- Aurelian GheondeaIndefinite Excursion in Operator Theory (eBook, PDF)63,95 €
- Analysis and Geometry on Graphs and Manifolds (eBook, PDF)86,95 €
- Mehrzad TabatabaianTensor Analysis for Engineers (eBook, PDF)136,95 €
-
-
-
A thorough introduction to graduate classical numerical analysis, with all important topics covered rigorously.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Erscheinungstermin: 20. Oktober 2022
- Englisch
- ISBN-13: 9781108950107
- Artikelnr.: 70910745
- Verlag: Cambridge University Press
- Erscheinungstermin: 20. Oktober 2022
- Englisch
- ISBN-13: 9781108950107
- Artikelnr.: 70910745
Abner J. Salgado is Professor of Mathematics at the University of Tennessee, Knoxville. He obtained his PhD in Mathematics in 2010 from Texas A&M University. His main area of research is the numerical analysis of nonlinear partial differential equations, and related questions.
Part I. Numerical Linear Algebra: 1. Linear operators and matrices
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
Part I. Numerical Linear Algebra: 1. Linear operators and matrices
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.
2. The singular value decomposition
3. Systems of linear equations
4. Norms and matrix conditioning
5. Linear least squares problem
6. Linear iterative methods
7. Variational and Krylov subspace methods
8. Eigenvalue problems
Part II. Constructive Approximation Theory: 9. Polynomial interpolation
10. Minimax polynomial approximation
11. Polynomial least squares approximation
12. Fourier series
13. Trigonometric interpolation and the Fast Fourier Transform
14. Numerical quadrature
Part III. Nonlinear Equations and Optimization: 15. Solution of nonlinear equations
16. Convex optimization
Part IV. Initial Value Problems for Ordinary Di fferential Equations: 17. Initial value problems for ordinary diff erential equations
18. Single-step methods
19. Runge-Kutta methods
20. Linear multi-step methods
21. Sti ff systems of ordinary diff erential equations and linear stability
22. Galerkin methods for initial value problems
Part V. Boundary and Initial Boundary Value Problems: 23. Boundary and initial boundary value problems for partial di fferential equations
24. Finite diff erence methods for elliptic problems
25. Finite element methods for elliptic problems
26. Spectral and pseudo-spectral methods for periodic elliptic equations
27. Collocation methods for elliptic equations
28. Finite di fference methods for parabolic problems
29. Finite diff erence methods for hyperbolic problems
Appendix A. Linear algebra review
Appendix B. Basic analysis review
Appendix C. Banach fixed point theorem
Appendix D. A (petting) zoo of function spaces
References
Index.