A. I. Stepanets
Classification and Approximation of Periodic Functions (eBook, PDF)
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
A. I. Stepanets
Classification and Approximation of Periodic Functions (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.81MB
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Netherlands
- Seitenzahl: 366
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401101158
- Artikelnr.: 44054588
- Verlag: Springer Netherlands
- Seitenzahl: 366
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9789401101158
- Artikelnr.: 44054588
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Classes of Periodic Functions.- 1. Sets of Summable Functions. Moduli of Continuity.- 2. The Classes H?[a, b] and H?.- 3. Moduli of Continuity in the Spaces Lp. The Classes H?p.- 4. Classes of Differentiable Functions.- 5. Conjugate Functions and Their Classes.- 6. Weil-Nagy Classes.- 7. The Classes.- 8. The Classes.- 9. The Classes 35 10. Order Relation for (?, ? )-Derivatives.- 2. Integral Representations of Deviations of Linear Means Of Fourier Series.- 1. Fourier Sums.- 2. Linear Methods of Summation of Fourier Series. General Aspects.- 3. Integral Representations of ?n(f;x;?).- 4. Representations of Deviations of Fourier Sums on the Sets and.- 5. Representations of Deviations of Fourier Sums on the Sets and.- 3. Approximations by Fourier Sums in the Spaces c and l1.- 1. Simplest Extremal Problems in the Space C.- 2. Simplest Extremal Problems in the Space L1.- 3. Asymptotic Equalities for ? n(H?).- 4. Asymptotic Equalities for.- 5. Moduli of Half-Decay of Convex Functions.- 6. Asymptotic Representations for ?n(f; x) on the Sets.- 7. Asymptotic Equalities for and.- 8. Approximations of Analytic Functions by Fourier Sums in the Uniform Metric.- 9. Approximations of Entire Functions by Fourier Sums in the Uniform Metric.- 10. Asymptotic Equalities for and.- 11. Asymptotic Equalities for and.- 12. Asymptotic Equalities for and.- 13. Approximations of Analytic Functions in the Metric of the Space L.- 14. Asymptotic Equalities for and.- 15. Behavior of a Sequence of Partial Fourier Sums near Their Points of Divergence.- 4. Simultaneous Approximation of Functions and their Derivatives by Fourier Sums.- 1. Statement of the Problem and Auxiliary Facts.- 2. Asymptotic Equalities for.- 3. Asymptotic Equalities for.- 4. Corollaries of Theorems 2.1 and 3.1.- 5.Convergence Rate of the Group of Deviations.- 6. Strong Summability of Fourier Series.- 5. Convergence Rate of Fourier Series and Best Approximations in the Spaces lp.- 1. Approximations in the Space L2.- 2. Jackson Inequalities in the Space L2.- 3. Multiplicators. Marcinkiewicz Theorem. Riesz Theorem. Hardy - Littlewood Theorem.- 4. Imbedding Theorems for the Sets.- 5. Approximations of Functions from the Sets.- 6. Best Approximations of Infinitely Differentiable Functions.- 7. Jackson Inequalities in the Spaces C and Lp.- 6. Best Approximations in the Spaces C and l.- 1. Zeros of Trigonometric Polynomials.- 2. Chebyshev Theorem and de la Vallée Poussin Theorem.- 3. Polynomial of Best Approximation in the Space L.- 4. Approximation of Classes of Convolutions.- 5. Orders of Best Approximations.- 6. Exact Values of Upper Bounds of Best Approximations.- Bibliographical Notes.- References.
1. Classes of Periodic Functions.- 1. Sets of Summable Functions. Moduli of Continuity.- 2. The Classes H?[a, b] and H?.- 3. Moduli of Continuity in the Spaces Lp. The Classes H?p.- 4. Classes of Differentiable Functions.- 5. Conjugate Functions and Their Classes.- 6. Weil-Nagy Classes.- 7. The Classes.- 8. The Classes.- 9. The Classes 35 10. Order Relation for (?, ? )-Derivatives.- 2. Integral Representations of Deviations of Linear Means Of Fourier Series.- 1. Fourier Sums.- 2. Linear Methods of Summation of Fourier Series. General Aspects.- 3. Integral Representations of ?n(f;x;?).- 4. Representations of Deviations of Fourier Sums on the Sets and.- 5. Representations of Deviations of Fourier Sums on the Sets and.- 3. Approximations by Fourier Sums in the Spaces c and l1.- 1. Simplest Extremal Problems in the Space C.- 2. Simplest Extremal Problems in the Space L1.- 3. Asymptotic Equalities for ? n(H?).- 4. Asymptotic Equalities for.- 5. Moduli of Half-Decay of Convex Functions.- 6. Asymptotic Representations for ?n(f; x) on the Sets.- 7. Asymptotic Equalities for and.- 8. Approximations of Analytic Functions by Fourier Sums in the Uniform Metric.- 9. Approximations of Entire Functions by Fourier Sums in the Uniform Metric.- 10. Asymptotic Equalities for and.- 11. Asymptotic Equalities for and.- 12. Asymptotic Equalities for and.- 13. Approximations of Analytic Functions in the Metric of the Space L.- 14. Asymptotic Equalities for and.- 15. Behavior of a Sequence of Partial Fourier Sums near Their Points of Divergence.- 4. Simultaneous Approximation of Functions and their Derivatives by Fourier Sums.- 1. Statement of the Problem and Auxiliary Facts.- 2. Asymptotic Equalities for.- 3. Asymptotic Equalities for.- 4. Corollaries of Theorems 2.1 and 3.1.- 5.Convergence Rate of the Group of Deviations.- 6. Strong Summability of Fourier Series.- 5. Convergence Rate of Fourier Series and Best Approximations in the Spaces lp.- 1. Approximations in the Space L2.- 2. Jackson Inequalities in the Space L2.- 3. Multiplicators. Marcinkiewicz Theorem. Riesz Theorem. Hardy - Littlewood Theorem.- 4. Imbedding Theorems for the Sets.- 5. Approximations of Functions from the Sets.- 6. Best Approximations of Infinitely Differentiable Functions.- 7. Jackson Inequalities in the Spaces C and Lp.- 6. Best Approximations in the Spaces C and l.- 1. Zeros of Trigonometric Polynomials.- 2. Chebyshev Theorem and de la Vallée Poussin Theorem.- 3. Polynomial of Best Approximation in the Space L.- 4. Approximation of Classes of Convolutions.- 5. Orders of Best Approximations.- 6. Exact Values of Upper Bounds of Best Approximations.- Bibliographical Notes.- References.