Diffusion is a principle transport mechanism emerging widely at different scale, from nano to micro and macro levels. This is a contributed book of seventh chapters encompassing local and no-local diffusion phenomena modelled with integer-order (local) and non-local operators. This book collates research results developed by scientists from different countries but with common research interest in modelling of diffusion problems. The results reported encompass diffusion problems related to efficient numerical modelling, hypersonic flows, approximate analytical solutions of solvent diffusion in polymers and wetting of soils. Some chapters are devoted to fractional diffusion problem with operators with singular and non-singular memory kernels. The book content cannot present the entire rich area of problems related to modelling of diffusion phenomena but allow seeing some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels the numerical methods and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research. The book is oriented to researchers; master and PhD students involved in diffusion problems with a variety of application and could serves as a rich reference source and a collection of texts provoking new ideas.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.