52,95 €
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
52,95 €
Als Download kaufen
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
52,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is a guide to lead the readers into the field of remote sensing cloud computing. It describes the entire life cycle of remote sensing data and builds an entire high performance remote sensing data processing system framework. It also develops a series of remote sensing data management and processing standards.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 12.88MB
Andere Kunden interessierten sich auch für
- Lizhe WangCloud Computing in Remote Sensing (eBook, PDF)52,95 €
- Subhrajit Sinha RoyIntelligent Copyright Protection for Images (eBook, ePUB)21,95 €
- Vasuki ANature-Inspired Optimization Algorithms (eBook, ePUB)52,95 €
- From Visual Surveillance to Internet of Things (eBook, ePUB)52,95 €
- Sheila AnandA Guide for Machine Vision in Quality Control (eBook, ePUB)52,95 €
- Disruptive Trends in Computer Aided Diagnosis (eBook, ePUB)47,95 €
- Advanced Wireless Sensing Techniques for 5G Networks (eBook, ePUB)52,95 €
-
-
-
This book is a guide to lead the readers into the field of remote sensing cloud computing. It describes the entire life cycle of remote sensing data and builds an entire high performance remote sensing data processing system framework. It also develops a series of remote sensing data management and processing standards.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 292
- Erscheinungstermin: 11. Juli 2019
- Englisch
- ISBN-13: 9780429949876
- Artikelnr.: 57123000
- Verlag: Taylor & Francis
- Seitenzahl: 292
- Erscheinungstermin: 11. Juli 2019
- Englisch
- ISBN-13: 9780429949876
- Artikelnr.: 57123000
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Lizhe Wang is a "ChuTian" Chair Professor at School of Computer Science, China Univ. of Geosciences (CUG), and a Professor at Inst. of Remote Sensing & Digital Earth, Chinese Academy of Sciences (CAS). Prof. Wang received B.E. & M.E from Tsinghua Univ. and Doctor of Eng. from Univ. Karlsruhe (Magna Cum Laude), Germany. Prof. Wang is a Fellow of IET, Fellow of British Computer Society. Prof. Wang serves as an Associate Editor of IEEE TPDS, TCC and TSUSC. His main research interests include HPC, e-Science, and remote sensing image processing.
List of Publications:
1. Lizhe Wang, Dan Chen, Wangyang Liu, Yan Ma, Yanhui Wu, Ze Deng: DDDAS-Based Parallel Simulation of Threat Management for Urban Water Distribution Systems. Computing in Science and Engineering 16(1): 8-17 (2014)
2. Jining Yan, Lizhe Wang, Lajiao Chen, Lingjun Zhao, Bormin Huang: A Dynamic Remote Sensing Data-Driven Approach for Oil Spill Simulation in the Sea. Remote Sensing 7(6): 7105-7125 (2015)
3. Boxin Zuo, Lizhe Wang, Weitao Chen: Full Tensor Eigenvector Analysis on Air-Borne Magnetic Gradiometer Data for the Detection of Dipole-Like Magnetic Sources. Sensors 17(9): 1976 (2017)
4. Lizhe Wang, Yan Ma, Jining Yan, Victor Chang, Albert Y. Zomaya: pipsCloud: High performance cloud computing for remote sensing big data management and processing. Future Generation Comp. Syst. 78: 353-368 (2018)
5. Lizhe Wang, Yan Ma, Albert Y. Zomaya, Rajiv Ranjan, Dan Chen: A Parallel File System with Application-Aware Data Layout Policies for Massive Remote Sensing Image Processing in Digital Earth. IEEE Trans. Parallel Distrib. Syst. 26(6): 1497-1508 (2015)
Dr. Jining Yan received his PhD in signal and information processing in the University of Chinese Academy of Sciences. He is an associate professor of School of Computer Science, China University of Geoscience. His research is focused on remote sensing data processing and information service, cloud computing in remote sensing.
Representative Publications:
1. Jining Yan, Lizhe Wang, Kim-Kwang Raymond Choo and Wei Jie. A cloud-based remote sensing data production system. Future Generation Computer Systems. 2017. http://dx.doi.org/10.1016/j.future.2017.02.044.
2. Jining Yan, Lizhe Wang. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data. Remote Sensing. 2016, 8(12), 995.
3. Jining Yan, Lizhe Wang, Lajiao Chen, Lingjun Zhao, and Bomin Huang. A Dynamic Remote Sensing Data Driven Approach for Oil Spill Simulation in the Sea, Remote Sensing. 2015, 7, 7105-7125.
4. Jining Yan, Kefa Zhou, Dingsheng Liu,Jinlin Wang, Lizhe Wang, Hui Liu. Alteration information extraction using improved relative absorption band-depth images, from HJ_1A HSI data: a case study in Xinjiang Hatu gold ore district,International Journal of Remote Sensing, 2014, 35(18): 6728-6741.
5. Fan Junqing, Yan Jining*, Ma Yan, Wang Lizhe. Big Data Integration in Remote Sensing across a Distributed Metadata-Based Spatial Infrastructure. Remote Sens. 2017, 10, 7; doi:10.3390/rs10010007.
Dr. Yan Ma is an Associate Professor at Inst. of Remote Sensing & Digital Earth, Chinese Academy of Sciences (CAS). Dr. Ma has received her M.E. and PHD degree of signal and information processing from University of Chinese Academy of Sciences. Dr. Ma also serves as an Associate Editor of Cluster Computing (Springer). She mainly lays her research interests on high performance geo-computing, parallel remote sensing image processing and Cloud Computing.
Representative Publications:
List of Publications:
1. Lizhe Wang, Dan Chen, Wangyang Liu, Yan Ma, Yanhui Wu, Ze Deng: DDDAS-Based Parallel Simulation of Threat Management for Urban Water Distribution Systems. Computing in Science and Engineering 16(1): 8-17 (2014)
2. Jining Yan, Lizhe Wang, Lajiao Chen, Lingjun Zhao, Bormin Huang: A Dynamic Remote Sensing Data-Driven Approach for Oil Spill Simulation in the Sea. Remote Sensing 7(6): 7105-7125 (2015)
3. Boxin Zuo, Lizhe Wang, Weitao Chen: Full Tensor Eigenvector Analysis on Air-Borne Magnetic Gradiometer Data for the Detection of Dipole-Like Magnetic Sources. Sensors 17(9): 1976 (2017)
4. Lizhe Wang, Yan Ma, Jining Yan, Victor Chang, Albert Y. Zomaya: pipsCloud: High performance cloud computing for remote sensing big data management and processing. Future Generation Comp. Syst. 78: 353-368 (2018)
5. Lizhe Wang, Yan Ma, Albert Y. Zomaya, Rajiv Ranjan, Dan Chen: A Parallel File System with Application-Aware Data Layout Policies for Massive Remote Sensing Image Processing in Digital Earth. IEEE Trans. Parallel Distrib. Syst. 26(6): 1497-1508 (2015)
Dr. Jining Yan received his PhD in signal and information processing in the University of Chinese Academy of Sciences. He is an associate professor of School of Computer Science, China University of Geoscience. His research is focused on remote sensing data processing and information service, cloud computing in remote sensing.
Representative Publications:
1. Jining Yan, Lizhe Wang, Kim-Kwang Raymond Choo and Wei Jie. A cloud-based remote sensing data production system. Future Generation Computer Systems. 2017. http://dx.doi.org/10.1016/j.future.2017.02.044.
2. Jining Yan, Lizhe Wang. Suitability Evaluation for Products Generation from Multisource Remote Sensing Data. Remote Sensing. 2016, 8(12), 995.
3. Jining Yan, Lizhe Wang, Lajiao Chen, Lingjun Zhao, and Bomin Huang. A Dynamic Remote Sensing Data Driven Approach for Oil Spill Simulation in the Sea, Remote Sensing. 2015, 7, 7105-7125.
4. Jining Yan, Kefa Zhou, Dingsheng Liu,Jinlin Wang, Lizhe Wang, Hui Liu. Alteration information extraction using improved relative absorption band-depth images, from HJ_1A HSI data: a case study in Xinjiang Hatu gold ore district,International Journal of Remote Sensing, 2014, 35(18): 6728-6741.
5. Fan Junqing, Yan Jining*, Ma Yan, Wang Lizhe. Big Data Integration in Remote Sensing across a Distributed Metadata-Based Spatial Infrastructure. Remote Sens. 2017, 10, 7; doi:10.3390/rs10010007.
Dr. Yan Ma is an Associate Professor at Inst. of Remote Sensing & Digital Earth, Chinese Academy of Sciences (CAS). Dr. Ma has received her M.E. and PHD degree of signal and information processing from University of Chinese Academy of Sciences. Dr. Ma also serves as an Associate Editor of Cluster Computing (Springer). She mainly lays her research interests on high performance geo-computing, parallel remote sensing image processing and Cloud Computing.
Representative Publications:
- Yan Ma, Lizhe Wang, Albert Y. Zomaya, Dan Chen, Rajiv Ranjan, "Task-Tree based Large-Scale Mosaicking for Remote Sensed Imageries with Dynamic DAG Scheduling," IEEE Transactions on Parallel and Distributed Systems (TPDS), 20 Nov. 2013.
- Lizhe Wang, Yan Ma*, Albert Zomaya, Rajiv Ranjan Dan Chen, "A Parallel File System with Application-aware Data Layout Policies in Digital Earth," IEEE Trans. Parallel . Syst. (TPDS), vol. 26, no. 6, pp. 1497-1508, 2015
- Yan Ma, Lizhe Wang, Peng Liu, and Rajiv Ranjan. Towards building a data-intensive index for big data computing - A case study of remote sensing data processing. Information Sciences, 319:171-188, 2015
- LZ. Wang, Y. Ma*, J. Yan, V. Chang, AY Zomaya; pipscloud: High performance cloud computingfor remote sensing big data management and processing. Future Gener. Comput.Syst.(FGCS), 78 (2018), pp. 353-368
- Ma Y, Wang L, Liu D, et al. Generic Parallel Programming for Massive Remote Sensing Data Processing. Cluster Computing (CLUSTER), 2012 IEEE International Conference on. IEEE, 2012: 420-428.