Coud reliability engineering is a leading issue of cloud services. Cloud service providers guarantee computation, storage and applications through service-level agreements (SLAs) for promised levels of performance and uptime. Cloud Reliability Engineering: Technologies and Tools presents case studies examining cloud services, their challenges, and the reliability mechanisms used by cloud service providers. These case studies provide readers with techniques to harness cloud reliability and availability requirements in their own endeavors. Both conceptual and applied, the book explains reliability theory and the best practices used by cloud service companies to provide high availability. It also examines load balancing, and cloud security.
Written by researchers and practitioners, the book's chapters are a comprehensive study of cloud reliability and availability issues and solutions. Various reliability class distributions and their effects on cloud reliability are discussed. An important aspect of reliability block diagrams is used to categorize poor reliability of cloud infrastructures, where enhancement can be made to lower the failure rate of the system. This technique can be used in design and functional stages to determine poor reliability of a system and provide target improvements. Load balancing for reliability is examined as a migrating process or performed by using virtual machines. The approach employed to identify the lightly loaded destination node to which the processes/virtual machines migrate can be optimized by employing a genetic algorithm. To analyze security risk and reliability, a novel technique for minimizing the number of keys and the security system is presented. The book also provides an overview of testing methods for the cloud, and a case study discusses testing reliability, installability, and security. A comprehensive volume, Cloud Reliability Engineering: Technologies and Tools combines research, theory, and best practices used to engineer reliable cloud availability and performance.
Written by researchers and practitioners, the book's chapters are a comprehensive study of cloud reliability and availability issues and solutions. Various reliability class distributions and their effects on cloud reliability are discussed. An important aspect of reliability block diagrams is used to categorize poor reliability of cloud infrastructures, where enhancement can be made to lower the failure rate of the system. This technique can be used in design and functional stages to determine poor reliability of a system and provide target improvements. Load balancing for reliability is examined as a migrating process or performed by using virtual machines. The approach employed to identify the lightly loaded destination node to which the processes/virtual machines migrate can be optimized by employing a genetic algorithm. To analyze security risk and reliability, a novel technique for minimizing the number of keys and the security system is presented. The book also provides an overview of testing methods for the cloud, and a case study discusses testing reliability, installability, and security. A comprehensive volume, Cloud Reliability Engineering: Technologies and Tools combines research, theory, and best practices used to engineer reliable cloud availability and performance.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.