Axiomatic set theory is the concern of this book. More particularly, the authors prove results about the coding of models M, of Zermelo-Fraenkel set theory together with the Generalized Continuum Hypothesis by using a class 'forcing' construction. By this method they extend M to another model L[a] with the same properties. L[a] is Godels universe of 'constructible' sets L, together with a set of integers a which code all the cardinality and cofinality structure of M. Some applications are also considered. Graduate students and research workers in set theory and logic will be especially interested by this account.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.