Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Subgroup theorems and graphs.- Counting unlabeled acyclic digraphs.- Golay sequences.- The knotted hexagon.- On skew room squares.- Some new constructions for orthogonal designs using circulants.- A note on asymptotic existence results for orthogonal designs.- The spectrum of a graph.- Latin squares composed of four disjoint subsquares.- The semi-stability of lexicographic products.- On rings of circuits in planar graphs.- Sum-free sets in loops.- Groups with stable graphs.- A problem in the design of electrical circuits, a generalized subadditive inequality and the recurrence relation j(n,m)=j([n/2],m)+j([n+1/2],m)+j(n,m-1).- Orthogonal designs in order 24.- A schröder triangle: Three combinatorial problems.- A combinatorial approach to map theory.- On quasi-multiple designs.- A generalisation of the binomial coefficients.
Subgroup theorems and graphs.- Counting unlabeled acyclic digraphs.- Golay sequences.- The knotted hexagon.- On skew room squares.- Some new constructions for orthogonal designs using circulants.- A note on asymptotic existence results for orthogonal designs.- The spectrum of a graph.- Latin squares composed of four disjoint subsquares.- The semi-stability of lexicographic products.- On rings of circuits in planar graphs.- Sum-free sets in loops.- Groups with stable graphs.- A problem in the design of electrical circuits, a generalized subadditive inequality and the recurrence relation j(n,m)=j([n/2],m)+j([n+1/2],m)+j(n,m-1).- Orthogonal designs in order 24.- A schröder triangle: Three combinatorial problems.- A combinatorial approach to map theory.- On quasi-multiple designs.- A generalisation of the binomial coefficients.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826