Combinatorics, Graph Theory and Computing (eBook, PDF)
SEICCGTC 2020, Boca Raton, USA, March 9–13
149,79 €
inkl. MwSt.
Sofort per Download lieferbar
Combinatorics, Graph Theory and Computing (eBook, PDF)
SEICCGTC 2020, Boca Raton, USA, March 9–13
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This proceedings volume gathers selected, revised papers presented at the 51st Southeastern International Conference on Combinatorics, Graph Theory and Computing (SEICCGTC 2020), held at Florida Atlantic University in Boca Raton, USA, on March 9-13, 2020. The SEICCGTC is broadly considered to be a trendsetter for other conferences around the world – many of the ideas and themes first discussed at it have subsequently been explored at other conferences and symposia. The conference has been held annually since 1970, in Baton Rouge, Louisiana and Boca Raton, Florida. Over the years, it has grown…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 5.45MB
- Upload möglich
Andere Kunden interessierten sich auch für
- Combinatorics, Graph Theory and Computing (eBook, PDF)181,89 €
- Symmetries in Graphs, Maps, and Polytopes (eBook, PDF)149,79 €
- Ramsey Theory (eBook, PDF)96,29 €
- An Irregular Mind (eBook, PDF)110,95 €
- Jean-Bernard LasserreLinear and Integer Programming vs Linear Integration and Counting (eBook, PDF)96,29 €
- Lattice Path Combinatorics and Applications (eBook, PDF)139,09 €
- Rigidity and Symmetry (eBook, PDF)96,29 €
-
-
-
This proceedings volume gathers selected, revised papers presented at the 51st Southeastern International Conference on Combinatorics, Graph Theory and Computing (SEICCGTC 2020), held at Florida Atlantic University in Boca Raton, USA, on March 9-13, 2020. The SEICCGTC is broadly considered to be a trendsetter for other conferences around the world – many of the ideas and themes first discussed at it have subsequently been explored at other conferences and symposia.
The conference has been held annually since 1970, in Baton Rouge, Louisiana and Boca Raton, Florida. Over the years, it has grown to become the major annual conference in its fields, and plays a major role in disseminating results and in fostering collaborative work.
This volume is intended for the community of pure and applied mathematicians, in academia, industry and government, working in combinatorics and graph theory, as well as related areas of computer science and the interactionsamong these fields.
The conference has been held annually since 1970, in Baton Rouge, Louisiana and Boca Raton, Florida. Over the years, it has grown to become the major annual conference in its fields, and plays a major role in disseminating results and in fostering collaborative work.
This volume is intended for the community of pure and applied mathematicians, in academia, industry and government, working in combinatorics and graph theory, as well as related areas of computer science and the interactionsamong these fields.
Produktdetails
- Produktdetails
- Verlag: Springer International Publishing
- Erscheinungstermin: 13. September 2022
- Englisch
- ISBN-13: 9783031053757
- Artikelnr.: 65708016
- Verlag: Springer International Publishing
- Erscheinungstermin: 13. September 2022
- Englisch
- ISBN-13: 9783031053757
- Artikelnr.: 65708016
Frederick Hoffman is Professor of mathematical sciences at Florida Atlantic University, Boca Raton, USA. He obtained his PhD in Mathematics (1964) from the University of Virginia, USA. Dr. Hoffman directed thirty-five of the Southeastern International Conferences on Combinatorics, Graph Theory and Computing. He was one of the founding faculty of the FAU Computer Science Department, and a founding fellow of The Institute of Combinatorics and its Applications. His research interests focus on finite groups, combinatorics and applications, and artificial intelligence.
Ratio Balancing Numbers(Bartz et al).- An Unexpected Digit Permutation from Multiplying in any Number Base(Qu et al).- A & Z Sequences for Double Riordan Arrays (Branch et al).- Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of The Friendship Theorem(Myers).- Finding Exact Values of a Character Sum (Peart et al).- On Minimum Index Stanton 4-cycle Designs (Bunge et al).- k-Plane Matroids and Whiteley’s Flattening Conjectures (Servatius et al).- Bounding the edge cover of a hypergraph (Shahrokhi).- A Generalization on Neighborhood Representatives (Holliday).- Harmonious Labelings of Disconnected Graphs involving Cycles and Multiple Components Consisting of Starlike Trees(Abueida et al).- On Rainbow Mean Colorings of Trees (Hallas et al).- Examples of Edge Critical Graphs in Peg Solitaire (Beeler et al).- Regular Tournaments with Minimum Split Domination Number and Cycle Extendability (Factor et al).- Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron(Munger et al).- Efficient and Non-efficient Domination of Z-stacked Archimedean Lattices (Paskowitz et al).- On subdivision graphs which are 2-steps Hamiltonian graphs and hereditary non 2-steps Hamiltonian graphs (Lee et al).- On the Erd}os-S_os Conjecture for graphs with circumference at most k + 1 (Heissan et al).- Regular graph and some vertex-deleted subgraph (Egawa et al).- Connectivity and Extendability in Digraphs (Beasle).-
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).- Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).- Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
Ratio Balancing Numbers(Bartz et al).- An Unexpected Digit Permutation from Multiplying in any Number Base(Qu et al).- A & Z Sequences for Double Riordan Arrays (Branch et al).- Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of The Friendship Theorem(Myers).- Finding Exact Values of a Character Sum (Peart et al).- On Minimum Index Stanton 4-cycle Designs (Bunge et al).- k-Plane Matroids and Whiteley's Flattening Conjectures (Servatius et al).- Bounding the edge cover of a hypergraph (Shahrokhi).- A Generalization on Neighborhood Representatives (Holliday).- Harmonious Labelings of Disconnected Graphs involving Cycles and Multiple Components Consisting of Starlike Trees(Abueida et al).- On Rainbow Mean Colorings of Trees (Hallas et al).- Examples of Edge Critical Graphs in Peg Solitaire (Beeler et al).- Regular Tournaments with Minimum Split Domination Number and Cycle Extendability (Factor et al).- Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron(Munger et al).- Efficient and Non-efficient Domination of Z-stacked Archimedean Lattices (Paskowitz et al).- On subdivision graphs which are 2-steps Hamiltonian graphs and hereditary non 2-steps Hamiltonian graphs (Lee et al).- On the Erd}os-S_os Conjecture for graphs with circumference at most k + 1 (Heissan et al).- Regular graph and some vertex-deleted subgraph (Egawa et al).- Connectivity and Extendability in Digraphs (Beasle).-
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).-Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).-Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
Ratio Balancing Numbers(Bartz et al).- An Unexpected Digit Permutation from Multiplying in any Number Base(Qu et al).- A & Z Sequences for Double Riordan Arrays (Branch et al).- Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of The Friendship Theorem(Myers).- Finding Exact Values of a Character Sum (Peart et al).- On Minimum Index Stanton 4-cycle Designs (Bunge et al).- k-Plane Matroids and Whiteley’s Flattening Conjectures (Servatius et al).- Bounding the edge cover of a hypergraph (Shahrokhi).- A Generalization on Neighborhood Representatives (Holliday).- Harmonious Labelings of Disconnected Graphs involving Cycles and Multiple Components Consisting of Starlike Trees(Abueida et al).- On Rainbow Mean Colorings of Trees (Hallas et al).- Examples of Edge Critical Graphs in Peg Solitaire (Beeler et al).- Regular Tournaments with Minimum Split Domination Number and Cycle Extendability (Factor et al).- Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron(Munger et al).- Efficient and Non-efficient Domination of Z-stacked Archimedean Lattices (Paskowitz et al).- On subdivision graphs which are 2-steps Hamiltonian graphs and hereditary non 2-steps Hamiltonian graphs (Lee et al).- On the Erd}os-S_os Conjecture for graphs with circumference at most k + 1 (Heissan et al).- Regular graph and some vertex-deleted subgraph (Egawa et al).- Connectivity and Extendability in Digraphs (Beasle).-
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).- Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).- Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
Ratio Balancing Numbers(Bartz et al).- An Unexpected Digit Permutation from Multiplying in any Number Base(Qu et al).- A & Z Sequences for Double Riordan Arrays (Branch et al).- Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of The Friendship Theorem(Myers).- Finding Exact Values of a Character Sum (Peart et al).- On Minimum Index Stanton 4-cycle Designs (Bunge et al).- k-Plane Matroids and Whiteley's Flattening Conjectures (Servatius et al).- Bounding the edge cover of a hypergraph (Shahrokhi).- A Generalization on Neighborhood Representatives (Holliday).- Harmonious Labelings of Disconnected Graphs involving Cycles and Multiple Components Consisting of Starlike Trees(Abueida et al).- On Rainbow Mean Colorings of Trees (Hallas et al).- Examples of Edge Critical Graphs in Peg Solitaire (Beeler et al).- Regular Tournaments with Minimum Split Domination Number and Cycle Extendability (Factor et al).- Independence and Domination of Chess Pieces on Triangular Boards and on the Surface of a Tetrahedron(Munger et al).- Efficient and Non-efficient Domination of Z-stacked Archimedean Lattices (Paskowitz et al).- On subdivision graphs which are 2-steps Hamiltonian graphs and hereditary non 2-steps Hamiltonian graphs (Lee et al).- On the Erd}os-S_os Conjecture for graphs with circumference at most k + 1 (Heissan et al).- Regular graph and some vertex-deleted subgraph (Egawa et al).- Connectivity and Extendability in Digraphs (Beasle).-
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).-Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).
On the extraconnectivity of arrangement graphs (Cheng et al).- k-Paths of k-Trees(Bickle).-Rearrangement of the Simple Random Walk(Skyers et al).- On the Energy of Transposition Graphs(DeDeo).- A Smaller Upper Bound for the (4; 82) Lattice Site Percolation Threshold(Wierman).