Combining Artificial Neural Nets (eBook, PDF)
Ensemble and Modular Multi-Net Systems
Redaktion: Sharkey, Amanda J. C.
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Combining Artificial Neural Nets (eBook, PDF)
Ensemble and Modular Multi-Net Systems
Redaktion: Sharkey, Amanda J. C.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume, written by leading researchers, presents methods of combining neural nets to improve their performance. The techniques include ensemble-based approaches, where a variety of methods are used to create a set of different nets trained on the same task, and modular approaches, where a task is decomposed into simpler problems. The techniques are also accompanied by an evaluation of their relative effectiveness and their application to a variety of problems.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 28.04MB
Andere Kunden interessierten sich auch für
- Artificial Neural Nets and Genetic Algorithms (eBook, PDF)40,95 €
- Luigi FortunaSoft Computing (eBook, PDF)40,95 €
- Artificial Neural Networks in Biomedicine (eBook, PDF)73,95 €
- Advances in Independent Component Analysis (eBook, PDF)137,95 €
- Artificial Neural Nets and Genetic Algorithms (eBook, PDF)73,95 €
- Morphogenetic Engineering (eBook, PDF)97,95 €
- David W. PearsonArtificial Neural Nets and Genetic Algorithms (eBook, PDF)40,95 €
-
-
-
This volume, written by leading researchers, presents methods of combining neural nets to improve their performance. The techniques include ensemble-based approaches, where a variety of methods are used to create a set of different nets trained on the same task, and modular approaches, where a task is decomposed into simpler problems. The techniques are also accompanied by an evaluation of their relative effectiveness and their application to a variety of problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer London
- Seitenzahl: 298
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447107934
- Artikelnr.: 44000776
- Verlag: Springer London
- Seitenzahl: 298
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781447107934
- Artikelnr.: 44000776
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Multi-Net Systems.- 1.0.1 Different Forms of Multi-Net System.- 1.1 Ensembles.- 1.2 Modular Approaches.- 1.3 The Chapters in this Book.- 1.4 References.- 2. Combining Predictors.- 2.1 Combine and Conquer.- 2.2 Regression.- 2.3 Classification.- 2.4 Remarks.- 2.5 Adaboost and Arcing.- 2.6 Recent Research.- 2.7 Coda.- 2.8 References.- 3. Boosting Using Neural Networks.- 3.1 Introduction.- 3.2 Bagging.- 3.3 Boosting.- 3.4 Other Ensemble Techniques.- 3.5 Neural Networks.- 3.6 Trees.- 3.7 Trees vs. Neural Nets.- 3.8 Experiments.- 3.9 Conclusions.- 3.10 References.- 4. A Genetic Algorithm Approach for Creating Neural Network Ensembles.- 4.1 Introduction.- 4.2 Neural Network Ensembles.- 4.3 The ADDEMUP Algorithm.- 4.4 Experimental Study.- 4.5 Discussion and Future Work.- 4.6 Additional Related Work.- 4.7 Conclusions.- 4.8 References.- 5. Treating Harmful Collinearity in Neural Network Ensembles.- 5.1 Introduction.- 5.2 Overview of Optimal Linear Combinations (OLC) of Neural Networks.- 5.3 Effects of Collinearity on Combining Neural Networks.- 5.4 Improving the Generalisation of NN Ensembles by Treating Harmful Collinearity.- 5.5 Experimental Results.- 5.6 Concluding Remarks.- 5.7 References.- 6. Linear and Order Statistics Combiners for Pattern Classification.- 6.1 Introduction.- 6.2 Class Boundary Analysis and Error Regions.- 6.3 Linear Combining.- 6.4 Order Statistics.- 6.5 Correlated Classifier Combining.- 6.6 Experimental Combining Results.- 6.7 Discussion.- 6.8 References.- 7. Variance Reduction via Noise and Bias Constraints.- 7.1 Introduction.- 7.2 Theoretical Considerations.- 7.3 The BootstrapEnsemble with Noise Algorithm.- 7.4 Results on the Two-Spirals Problem.- 7.5 Discussion.- 7.6 References.- 8. A Comparison of Visual Cue Combination Models.- 8.1Introduction.- 8.2 Stimulus.- 8.3 Tasks.- 8.4 Models of Cue Combination.- 8.5 Simulation Results.- 8.6 Summary.- 8.7 References.- 9. Model Selection of Combined Neural Nets for Speech Recognition.- 9.1 Introduction.- 9.2 The Acoustic Mapping.- 9.3 Network Architectures.- 9.4 Experimental Environment.- 9.5 Bootstrap Estimates and Model Selection.- 9.6 Normalisation Results.- 9.7 Continuous Digit Recognition Over the Telephone Network.- 9.8 Conclusions.- 9.9 References.- 10. Self-Organised Modular Neural Networks for Encoding Data.- 10.1 Introduction.- 10.2 Basic Theoretical Framework.- 10.3 Circular Manifold.- 10.4 Toroidal Manifold: Factorial Encoding.- 10.5 Asymptotic Results.- 10.6 Approximate the Posterior Probability.- 10.7 Joint Versus Factorial Encoding.- 10.8 Conclusions.- 10.9 References.- 11. Mixtures of X.- 11.1 Introduction.- 11.2 Mixtures of X.- 11.3 Summary.- 11.4 References.
1. Multi-Net Systems.- 1.0.1 Different Forms of Multi-Net System.- 1.1 Ensembles.- 1.2 Modular Approaches.- 1.3 The Chapters in this Book.- 1.4 References.- 2. Combining Predictors.- 2.1 Combine and Conquer.- 2.2 Regression.- 2.3 Classification.- 2.4 Remarks.- 2.5 Adaboost and Arcing.- 2.6 Recent Research.- 2.7 Coda.- 2.8 References.- 3. Boosting Using Neural Networks.- 3.1 Introduction.- 3.2 Bagging.- 3.3 Boosting.- 3.4 Other Ensemble Techniques.- 3.5 Neural Networks.- 3.6 Trees.- 3.7 Trees vs. Neural Nets.- 3.8 Experiments.- 3.9 Conclusions.- 3.10 References.- 4. A Genetic Algorithm Approach for Creating Neural Network Ensembles.- 4.1 Introduction.- 4.2 Neural Network Ensembles.- 4.3 The ADDEMUP Algorithm.- 4.4 Experimental Study.- 4.5 Discussion and Future Work.- 4.6 Additional Related Work.- 4.7 Conclusions.- 4.8 References.- 5. Treating Harmful Collinearity in Neural Network Ensembles.- 5.1 Introduction.- 5.2 Overview of Optimal Linear Combinations (OLC) of Neural Networks.- 5.3 Effects of Collinearity on Combining Neural Networks.- 5.4 Improving the Generalisation of NN Ensembles by Treating Harmful Collinearity.- 5.5 Experimental Results.- 5.6 Concluding Remarks.- 5.7 References.- 6. Linear and Order Statistics Combiners for Pattern Classification.- 6.1 Introduction.- 6.2 Class Boundary Analysis and Error Regions.- 6.3 Linear Combining.- 6.4 Order Statistics.- 6.5 Correlated Classifier Combining.- 6.6 Experimental Combining Results.- 6.7 Discussion.- 6.8 References.- 7. Variance Reduction via Noise and Bias Constraints.- 7.1 Introduction.- 7.2 Theoretical Considerations.- 7.3 The BootstrapEnsemble with Noise Algorithm.- 7.4 Results on the Two-Spirals Problem.- 7.5 Discussion.- 7.6 References.- 8. A Comparison of Visual Cue Combination Models.- 8.1Introduction.- 8.2 Stimulus.- 8.3 Tasks.- 8.4 Models of Cue Combination.- 8.5 Simulation Results.- 8.6 Summary.- 8.7 References.- 9. Model Selection of Combined Neural Nets for Speech Recognition.- 9.1 Introduction.- 9.2 The Acoustic Mapping.- 9.3 Network Architectures.- 9.4 Experimental Environment.- 9.5 Bootstrap Estimates and Model Selection.- 9.6 Normalisation Results.- 9.7 Continuous Digit Recognition Over the Telephone Network.- 9.8 Conclusions.- 9.9 References.- 10. Self-Organised Modular Neural Networks for Encoding Data.- 10.1 Introduction.- 10.2 Basic Theoretical Framework.- 10.3 Circular Manifold.- 10.4 Toroidal Manifold: Factorial Encoding.- 10.5 Asymptotic Results.- 10.6 Approximate the Posterior Probability.- 10.7 Joint Versus Factorial Encoding.- 10.8 Conclusions.- 10.9 References.- 11. Mixtures of X.- 11.1 Introduction.- 11.2 Mixtures of X.- 11.3 Summary.- 11.4 References.