Alle Infos zum eBook verschenken
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
During the first decade following the invention of the transistor, progress in semiconductor device technology advanced rapidly due to an effective synergy of technological discoveries and physical understanding. Through physical reasoning, a feeling for the right assumption and the correct interpretation of experimental findings, a small group of pioneers conceived the major analytic design equations, which are currently to be found in numerous textbooks. Naturally with the growth of specific applications, the description of some characteristic properties became more complicated. For…mehr
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 28.19MB
- Design of System on a Chip (eBook, PDF)98,95 €
- Analog Circuit Design (eBook, PDF)161,95 €
- Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (eBook, PDF)40,95 €
- -30%11Ernst-Helmut HorneberSimulation elektrischer Schaltungen auf dem Rechner (eBook, PDF)38,66 €
- Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation (eBook, PDF)73,95 €
- The Best of ICCAD (eBook, PDF)233,95 €
- Edwin W. GreeneichAnalog Integrated Circuits (eBook, PDF)113,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Springer Vienna
- Seitenzahl: 351
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783709190432
- Artikelnr.: 53156522
- Verlag: Springer Vienna
- Seitenzahl: 351
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783709190432
- Artikelnr.: 53156522
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1.1 Compact Models.
1.1.1 Models Based on Device Physics.
1.1.2 Numerical Table Models.
1.1.3 Empirical Models.
1.2 Compact Models and Simulation Programs.
1.3 Subjects Treated in This Book.
References.
2 Some Basic Semiconductor Physics.
2.1 Quantum
Mechanical Concepts.
2.2 Distribution Function and Carrier Concentration.
2.3 The Boltzmann Transport Equation.
2.4 Bandgap Narrowing.
2.5 Mobility and Resistivity in Silicon.
2.6 Recombination.
2.7 Avalanche Multplication.
2.8 Noise Sources.
2.8.1 Shot Noise.
2.8.2 Diffusion Noise and Thermal Noise.
2.8.3 Flicker Noise.
References.
3 Modelling of Bipolar Device Phenomena.
3.1 Injection and Transport Models.
3.1.1 Solution of the Continuity Equations.
3.1.2 Injection Model.
3.1.3 Transport Model.
3.2 The Quasi
Static Approximation and the Charge Control Principle.
3.3 Collector Currents and Stored Charges.
3.3.1 General Relation Between Collector Current and Charges.
3.3.2 The Integral Charge Control Relation.
3.3.3 Current, Charges and Minority Carrier Concentrations.
3.3.3.1 The Low
Injection Case: n(x) « Na(x).
3.3.3.2 The High
Injection Case: n(x) » Na(x).
3.3.3.3 The General Case.
3.4 Base Currents.
3.5 Depletion Charges and Capacitances.
3.5.1 Influence of Current on QTc.
3.6 Early Effect.
3.7 Quasi
Saturation, Base Widening and Kirk Effect.
3.7.1 The Charge Storage in the Epilayer.
3.7.2 Influence of Ic: Ohmic and Hot Carrier Behaviour (Kirk Effect).
3.7.3 Inverse Mode of Operation.
3.8 Avalanche Multiplication.
3.9 Series Resistances.
3.9.1 Emitter Series Resistance.
3.9.2 Base Resistance.
3.9.3 Collector Series Resistance.
3.10 Time
and Frequency
Dependent Behaviour.
3.10.1 Charge Control and Quasi
Static Approach.
3.10.2 Exact One
Dimensional Solution.
3.10.3 Time Delays.
3.10.4 Base Charge Partitioning.
3.10.5 Second
Order Differential Operators.
3.11 Transit Time and Cut
Off Frequency fT.
3.12 Noise Behaviour.
3.13 Temperature Dependences.
References.
4 Compact Models for Vertical Bipolar Transistors.
4.1 Ebers
Moll
Type Models.
4.1.1 Basic Ebers
Moll Model.
4.1.2 Extensions of the Basic Ebers
Moll Model.
4.1.3 Temperature Dependence of the Parameters.
4.1.4 Typical Results.
4.2 Gummel
Poon
Type Models.
4.2.1 Basic Gummel
Poon Model.
4.2.2 Extensions.
4.2.3 Full Quasi
Saturation Model.
4.2.4 Typical Results.
4.3 The MEXTRAM Model.
4.3.1 Main Currents and Stored Charges.
4.3.2 Quasi
Saturation and Hot
Carrier Effect in the Epilayer.
4.3.3 Depletion Charges.
4.3.4 Base Currents.
4.3.5 Series Resistances.
4.3.6 Modelling the Inactive Part and Substrate.
4.3.7 Typical Results.
4.4 Short Review.
4.4.1 Basic Ebers
Moll Model.
4.4.2 Extensions to the Ebers
Moll Model.
4.4.3 Basic Gummel
Poon Model.
4.4.4 Extensions to the Gummel
Poon Model.
4.4.5 Mextram Models.
References.
5 Lateral pnp Transistor Models.
5.1 Model Definitions.
5.1.1 Lateral pnp Models of the Ebers
Moll Type.
5.1.2 Lateral pnp Models of the Gummel
Poon Type.
5.2 Results.
5.3 Shortcomings of Existing Models.
References.
6 MOSFET Physics Relevant to Device Modelling.
6.1 Formation of the Inversion Layer.
6.1.1 Qualitative Discussion.
6.1.2 Quantitative Analysis.
6.2 The Ideal MOS Transistor Current.
6.3 The Threshold Voltage.
6.3.1 The Body Effect.
6.3.2 Effect of Implants Additional to the Substrate Doping.
6.3.3 Effect of Implants of Opposite Type to the Substrate Doping.
6.3.4 Temperature Dependence.
6.3.5 Short
Channel Effect.
6.3.6 Narrow
Width Effect.
6.4 Carrier Mobility in Inversion Layers.
6.4.1 Bias Dependence of the Carrier Mobility.
6.4.2 Temperature Dependence.
6.4.3 Modelling of Effects Other than Mobility Via the ?
Parameters.
6.5 Saturation Mode.
6.5.1 Static Feedback.
6.5.2 Channel
Length Modulation.
6.6 Dynamic Operation.
6.6.1 Quasi
Static Operation.
6.6.2 Charges, Charge Distribution and Capacitances in the Active Region.
6.6.3 Charges in the Off
State Region.
6.6.4 Parasitic Contributions.
6.7 Intrinsic Parasitics.
6.7.1 Series Resistance.
6.7.2 Gate
Junction Capacitance.
References.
7 Models for the Enhancement
Type MOSFET.
7.1 Long
Channel Models.
7.1.1 The Drain Current of Transistors in Uniformly Doped Substrates.
7.1.2 The Drain Current of Transistors with Threshold Adjustment Implant.
7.1.3 Charges and Capacitances.
7.1.4 Effect of Velocity Saturation on the Drain Current.
7.2 Small Transistor Models.
7.2.1 The Drain Current in Small MOSFETS.
7.2.1.1 The Threshold Voltage.
7.2.1.2 The Substrate Effect.
7.2.1.3 The Drain Saturation Voltage.
7.2.1.4 Static Feedback and Channel Length Modulation.
7.2.1.5 The Subthreshold Mode.
7.2.2 Charges.
7.2.2.1 Strong
Inversion Region.
7.2.2.2 Capacitances.
7.2.2.3 Charge in the Subthreshold Region.
7.2.3 Effect of Series Resistance on the Drain Current.
7.2.4 The Substrate Current.
7.3 Models for Analog Applications.
7.3.1 Review of Existing Models.
7.3.2 Improved Description of the Drain Current.
7.3.3 Capacitances.
7.3.4 Noise.
7.3.4.1 Thermal Noise.
7.3.4.2 Flicker Noise.
References.
8 Models for the Depletion
Type MOSFET.
8.1 Long
Channel Model.
8.1.1 Mobile Charge Density.
8.1.2 Threshold and Saturation Voltages.
8.1.3 Channel Current.
8.2 Short
Channel Model.
8.2.1 Specific Problems.
8.2.2 Depletion
Mode Channel Conductance for a Linear Doping Profile.
8.2.3 The Drain Current of a Short
Channel Depletion MOSFET.
8.3 Charges and Charge Distribution.
References.
9 Models for the JFET and the MESFET.
9.1 The Drain Current of the Junction
Gate FET.
9.1.1 The Classical Description.
9.1.2 A Model for Short
Channel Transistors.
9.2 The Drain Current of the MESFET.
9.2.1 Review of Empirical Models.
9.2.2 An Improved Model.
9.3 Charges and Capacitances.
References.
10 Parameter Determination.
10.1 General Optimization Method.
10.1.1 The Linear Case.
10.2 Specific Bipolar Measurements.
10.2.1 Measurements of Series Resistances.
10.2.2 Measuring the Cut
Off Frequency fT.
10.3 Example of Parameter Extraction for a Bipolar Transistor Model.
10.3.1 The Depletion Capacitances.
10.3.2 Early Effects.
10.3.3 The Gummel Plots.
10.3.4 The Quasi
Saturation.
10.3.5 The Cut
Off Frequency fT.
10.3.6 Concluding Remarks.
10.4 Parameter Determination for MOSFETs.
10.4.1 Enhancement Devices.
10.4.2 Depletion Devices.
10.5 Specific MOSFET Measurements.
References.
11 Process and Geometry Dependence, Optimization and Statistics of Parameters.
11.1 Unity Parameters and Geometrical Scaling in Bipolar Modelling.
11.1.1 Geometry Dependence.
11.1.2 Process Dependence of Unity Parameters.
11.2 Bipolar Process Blocks and Circuit Optimization.
11.3 Geometry
and Process Dependence of MOSFET Parameters.
11.3.1 Geometry Dependence.
11.3.2 Process Dependence.
11.4 Statistics: Definitions and Formulas.
11.5 Bipolar Statistical Modelling.
11.5.1 Process Blocks and Statistical Models.
11.5.2 Correlation Between Compact Model Parameters.
11.5.3 Correlation at the Process Level.
11.6 MOS Statistical Modelling.
11.6.1 Mismatch in MOSFETs.
11.6.2 Parametric Yield Estimation in MOS VLSI.
References.
1.1 Compact Models.
1.1.1 Models Based on Device Physics.
1.1.2 Numerical Table Models.
1.1.3 Empirical Models.
1.2 Compact Models and Simulation Programs.
1.3 Subjects Treated in This Book.
References.
2 Some Basic Semiconductor Physics.
2.1 Quantum
Mechanical Concepts.
2.2 Distribution Function and Carrier Concentration.
2.3 The Boltzmann Transport Equation.
2.4 Bandgap Narrowing.
2.5 Mobility and Resistivity in Silicon.
2.6 Recombination.
2.7 Avalanche Multplication.
2.8 Noise Sources.
2.8.1 Shot Noise.
2.8.2 Diffusion Noise and Thermal Noise.
2.8.3 Flicker Noise.
References.
3 Modelling of Bipolar Device Phenomena.
3.1 Injection and Transport Models.
3.1.1 Solution of the Continuity Equations.
3.1.2 Injection Model.
3.1.3 Transport Model.
3.2 The Quasi
Static Approximation and the Charge Control Principle.
3.3 Collector Currents and Stored Charges.
3.3.1 General Relation Between Collector Current and Charges.
3.3.2 The Integral Charge Control Relation.
3.3.3 Current, Charges and Minority Carrier Concentrations.
3.3.3.1 The Low
Injection Case: n(x) « Na(x).
3.3.3.2 The High
Injection Case: n(x) » Na(x).
3.3.3.3 The General Case.
3.4 Base Currents.
3.5 Depletion Charges and Capacitances.
3.5.1 Influence of Current on QTc.
3.6 Early Effect.
3.7 Quasi
Saturation, Base Widening and Kirk Effect.
3.7.1 The Charge Storage in the Epilayer.
3.7.2 Influence of Ic: Ohmic and Hot Carrier Behaviour (Kirk Effect).
3.7.3 Inverse Mode of Operation.
3.8 Avalanche Multiplication.
3.9 Series Resistances.
3.9.1 Emitter Series Resistance.
3.9.2 Base Resistance.
3.9.3 Collector Series Resistance.
3.10 Time
and Frequency
Dependent Behaviour.
3.10.1 Charge Control and Quasi
Static Approach.
3.10.2 Exact One
Dimensional Solution.
3.10.3 Time Delays.
3.10.4 Base Charge Partitioning.
3.10.5 Second
Order Differential Operators.
3.11 Transit Time and Cut
Off Frequency fT.
3.12 Noise Behaviour.
3.13 Temperature Dependences.
References.
4 Compact Models for Vertical Bipolar Transistors.
4.1 Ebers
Moll
Type Models.
4.1.1 Basic Ebers
Moll Model.
4.1.2 Extensions of the Basic Ebers
Moll Model.
4.1.3 Temperature Dependence of the Parameters.
4.1.4 Typical Results.
4.2 Gummel
Poon
Type Models.
4.2.1 Basic Gummel
Poon Model.
4.2.2 Extensions.
4.2.3 Full Quasi
Saturation Model.
4.2.4 Typical Results.
4.3 The MEXTRAM Model.
4.3.1 Main Currents and Stored Charges.
4.3.2 Quasi
Saturation and Hot
Carrier Effect in the Epilayer.
4.3.3 Depletion Charges.
4.3.4 Base Currents.
4.3.5 Series Resistances.
4.3.6 Modelling the Inactive Part and Substrate.
4.3.7 Typical Results.
4.4 Short Review.
4.4.1 Basic Ebers
Moll Model.
4.4.2 Extensions to the Ebers
Moll Model.
4.4.3 Basic Gummel
Poon Model.
4.4.4 Extensions to the Gummel
Poon Model.
4.4.5 Mextram Models.
References.
5 Lateral pnp Transistor Models.
5.1 Model Definitions.
5.1.1 Lateral pnp Models of the Ebers
Moll Type.
5.1.2 Lateral pnp Models of the Gummel
Poon Type.
5.2 Results.
5.3 Shortcomings of Existing Models.
References.
6 MOSFET Physics Relevant to Device Modelling.
6.1 Formation of the Inversion Layer.
6.1.1 Qualitative Discussion.
6.1.2 Quantitative Analysis.
6.2 The Ideal MOS Transistor Current.
6.3 The Threshold Voltage.
6.3.1 The Body Effect.
6.3.2 Effect of Implants Additional to the Substrate Doping.
6.3.3 Effect of Implants of Opposite Type to the Substrate Doping.
6.3.4 Temperature Dependence.
6.3.5 Short
Channel Effect.
6.3.6 Narrow
Width Effect.
6.4 Carrier Mobility in Inversion Layers.
6.4.1 Bias Dependence of the Carrier Mobility.
6.4.2 Temperature Dependence.
6.4.3 Modelling of Effects Other than Mobility Via the ?
Parameters.
6.5 Saturation Mode.
6.5.1 Static Feedback.
6.5.2 Channel
Length Modulation.
6.6 Dynamic Operation.
6.6.1 Quasi
Static Operation.
6.6.2 Charges, Charge Distribution and Capacitances in the Active Region.
6.6.3 Charges in the Off
State Region.
6.6.4 Parasitic Contributions.
6.7 Intrinsic Parasitics.
6.7.1 Series Resistance.
6.7.2 Gate
Junction Capacitance.
References.
7 Models for the Enhancement
Type MOSFET.
7.1 Long
Channel Models.
7.1.1 The Drain Current of Transistors in Uniformly Doped Substrates.
7.1.2 The Drain Current of Transistors with Threshold Adjustment Implant.
7.1.3 Charges and Capacitances.
7.1.4 Effect of Velocity Saturation on the Drain Current.
7.2 Small Transistor Models.
7.2.1 The Drain Current in Small MOSFETS.
7.2.1.1 The Threshold Voltage.
7.2.1.2 The Substrate Effect.
7.2.1.3 The Drain Saturation Voltage.
7.2.1.4 Static Feedback and Channel Length Modulation.
7.2.1.5 The Subthreshold Mode.
7.2.2 Charges.
7.2.2.1 Strong
Inversion Region.
7.2.2.2 Capacitances.
7.2.2.3 Charge in the Subthreshold Region.
7.2.3 Effect of Series Resistance on the Drain Current.
7.2.4 The Substrate Current.
7.3 Models for Analog Applications.
7.3.1 Review of Existing Models.
7.3.2 Improved Description of the Drain Current.
7.3.3 Capacitances.
7.3.4 Noise.
7.3.4.1 Thermal Noise.
7.3.4.2 Flicker Noise.
References.
8 Models for the Depletion
Type MOSFET.
8.1 Long
Channel Model.
8.1.1 Mobile Charge Density.
8.1.2 Threshold and Saturation Voltages.
8.1.3 Channel Current.
8.2 Short
Channel Model.
8.2.1 Specific Problems.
8.2.2 Depletion
Mode Channel Conductance for a Linear Doping Profile.
8.2.3 The Drain Current of a Short
Channel Depletion MOSFET.
8.3 Charges and Charge Distribution.
References.
9 Models for the JFET and the MESFET.
9.1 The Drain Current of the Junction
Gate FET.
9.1.1 The Classical Description.
9.1.2 A Model for Short
Channel Transistors.
9.2 The Drain Current of the MESFET.
9.2.1 Review of Empirical Models.
9.2.2 An Improved Model.
9.3 Charges and Capacitances.
References.
10 Parameter Determination.
10.1 General Optimization Method.
10.1.1 The Linear Case.
10.2 Specific Bipolar Measurements.
10.2.1 Measurements of Series Resistances.
10.2.2 Measuring the Cut
Off Frequency fT.
10.3 Example of Parameter Extraction for a Bipolar Transistor Model.
10.3.1 The Depletion Capacitances.
10.3.2 Early Effects.
10.3.3 The Gummel Plots.
10.3.4 The Quasi
Saturation.
10.3.5 The Cut
Off Frequency fT.
10.3.6 Concluding Remarks.
10.4 Parameter Determination for MOSFETs.
10.4.1 Enhancement Devices.
10.4.2 Depletion Devices.
10.5 Specific MOSFET Measurements.
References.
11 Process and Geometry Dependence, Optimization and Statistics of Parameters.
11.1 Unity Parameters and Geometrical Scaling in Bipolar Modelling.
11.1.1 Geometry Dependence.
11.1.2 Process Dependence of Unity Parameters.
11.2 Bipolar Process Blocks and Circuit Optimization.
11.3 Geometry
and Process Dependence of MOSFET Parameters.
11.3.1 Geometry Dependence.
11.3.2 Process Dependence.
11.4 Statistics: Definitions and Formulas.
11.5 Bipolar Statistical Modelling.
11.5.1 Process Blocks and Statistical Models.
11.5.2 Correlation Between Compact Model Parameters.
11.5.3 Correlation at the Process Level.
11.6 MOS Statistical Modelling.
11.6.1 Mismatch in MOSFETs.
11.6.2 Parametric Yield Estimation in MOS VLSI.
References.