Contents
Complex numbers and functions
Cauchy's Theorem and Cauchy's formula
Analytic continuation
Construction and approximation of holomorphic functions
Harmonic functions
Several complex variables
Bergman spaces
The canonical solution operator to
Nuclear Fréchet spaces of holomorphic functions
The -complex
The twisted -complex and Schrödinger operators
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book is clearly written, in a pleasant style and an elegant layout. The first part can be used for graduate courses in complex analysis, while the more advanced second part is adequate for postgraduate courses, as an introductive text on applications of operator theory on Hilbert spaces of holomorphic functions to partial differential equations in complex variables."
S. Cobzas in: Stud. Univ. Babes-Bolyai Math. 63/2 (2018), 285-286