Complex Valued Nonlinear Adaptive Filters (eBook, PDF)
Noncircularity, Widely Linear and Neural Models
Alle Infos zum eBook verschenken
Complex Valued Nonlinear Adaptive Filters (eBook, PDF)
Noncircularity, Widely Linear and Neural Models
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book was written in response to the growing demand for a text that provides a unified treatment of linear and nonlinear complex valued adaptive filters, and methods for the processing of general complex signals (circular and noncircular). It brings together adaptive filtering algorithms for feedforward (transversal) and feedback architectures and the recent developments in the statistics of complex variable, under the powerful frameworks of CR (Wirtinger) calculus and augmented complex statistics. This offers a number of theoretical performance gains, which is illustrated on both…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 13.09MB
- Saeid SaneiAdaptive Processing of Brain Signals (eBook, PDF)97,99 €
- Weifeng LiuKernel Adaptive Filtering (eBook, PDF)107,99 €
- Hans Georg SchaathunMachine Learning in Image Steganalysis (eBook, PDF)91,99 €
- Pentti O. HaikonenRobot Brains (eBook, PDF)102,99 €
- Amit KonarEmotion Recognition (eBook, PDF)118,99 €
- Haibo HeSelf-Adaptive Systems for Machine Intelligence (eBook, PDF)86,99 €
- Szabolcs Michael De GyurkyThe Autonomous System (eBook, PDF)104,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 344
- Erscheinungstermin: 20. April 2009
- Englisch
- ISBN-13: 9780470742631
- Artikelnr.: 37299197
- Verlag: John Wiley & Sons
- Seitenzahl: 344
- Erscheinungstermin: 20. April 2009
- Englisch
- ISBN-13: 9780470742631
- Artikelnr.: 37299197
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
obius Transformations 137 11.1 Matrix Representation of a Complex Number 137 11.2 The M
obius Transformation 140 11.3 Activation Functions and M
obius Transformations 142 11.4 All-pass Systems as M
obius Transformations 146 11.5 Fractional Delay Filters 147 12 Augmented Complex Statistics 151 12.1 Complex Random Variables (CRV) 152 12.2 Complex Circular Random Variables 158 12.3 Complex Signals 159 12.4 Second-order Characterisation of Complex Signals 161 13 Widely Linear Estimation and Augmented CLMS (ACLMS) 169 13.1 Minimum Mean Square Error (MMSE) Estimation in C 169 13.2 Complex White Noise 172 13.3 Autoregressive Modelling in C 173 13.4 The Augmented Complex LMS (ACLMS) Algorithm 175 13.5 Adaptive Prediction Based on ACLMS 178 14 Duality Between Complex Valued and Real Valued Filters 183 14.1 A Dual Channel Real Valued Adaptive Filter 184 14.2 Duality Between Real and Complex Valued Filters 186 14.3 Simulations 188 15 Widely Linear Filters with Feedback 191 15.1 The Widely Linear ARMA (WL-ARMA) Model 192 15.2 Widely Linear Adaptive Filters with Feedback 192 15.4 The Augmented Kalman Filter Algorithm for RNNs 198 15.5 Augmented Complex Unscented Kalman Filter (ACUKF) 200 15.6 Simulation Examples 203 16 Collaborative Adaptive Filtering 207 16.1 Parametric Signal Modality Characterisation 207 16.2 Standard Hybrid Filtering in R 209 16.3 Tracking the Linear/Nonlinear Nature of Complex Valued Signals 210 16.4 Split vs Fully Complex Signal Natures 214 16.5 Online Assessment of the Nature of Wind Signal 216 16.6 Collaborative Filters for General Complex Signals 217 17 Adaptive Filtering Based on EMD 221 17.1 The Empirical Mode Decomposition Algorithm 222 17.2 Complex Extensions of Empirical Mode Decomposition 226 17.3 Addressing the Problem of Uniqueness 230 17.4 Applications of Complex Extensions of EMD 230 18 Validation of Complex Representations - Is This Worthwhile? 233 18.1 Signal Modality Characterisation in R 234 18.2 Testing for the Validity of Complex Representation 239 18.3 Quantifying Benefits of Complex Valued Representation 243 Appendix A: Some Distinctive Properties of Calculus in C 245 Appendix B: Liouville's Theorem 251 Appendix C: Hypercomplex and Clifford Algebras 253 Appendix D: Real Valued Activation Functions 257 Appendix E: Elementary Transcendental Functions (ETF) 259 Appendix F: The O Notation and Standard Vector and Matrix Differentiation 263 Appendix G: Notions From Learning Theory 265 Appendix H: Notions from Approximation Theory 269 Appendix I: Terminology Used in the Field of Neural Networks 273 Appendix J: Complex Valued Pipelined Recurrent Neural Network (CPRNN) 275 Appendix K: Gradient Adaptive Step Size (GASS) Algorithms in R 279 Appendix L: Derivation of Partial Derivatives from Chapter 8 283 Appendix M: A Posteriori Learning 287 Appendix N: Notions from Stability Theory 291 Appendix O: Linear Relaxation 293 Appendix P: Contraction Mappings, Fixed Point Iteration and Fractals 299 References 309 Index 321
obius Transformations 137 11.1 Matrix Representation of a Complex Number 137 11.2 The M
obius Transformation 140 11.3 Activation Functions and M
obius Transformations 142 11.4 All-pass Systems as M
obius Transformations 146 11.5 Fractional Delay Filters 147 12 Augmented Complex Statistics 151 12.1 Complex Random Variables (CRV) 152 12.2 Complex Circular Random Variables 158 12.3 Complex Signals 159 12.4 Second-order Characterisation of Complex Signals 161 13 Widely Linear Estimation and Augmented CLMS (ACLMS) 169 13.1 Minimum Mean Square Error (MMSE) Estimation in C 169 13.2 Complex White Noise 172 13.3 Autoregressive Modelling in C 173 13.4 The Augmented Complex LMS (ACLMS) Algorithm 175 13.5 Adaptive Prediction Based on ACLMS 178 14 Duality Between Complex Valued and Real Valued Filters 183 14.1 A Dual Channel Real Valued Adaptive Filter 184 14.2 Duality Between Real and Complex Valued Filters 186 14.3 Simulations 188 15 Widely Linear Filters with Feedback 191 15.1 The Widely Linear ARMA (WL-ARMA) Model 192 15.2 Widely Linear Adaptive Filters with Feedback 192 15.4 The Augmented Kalman Filter Algorithm for RNNs 198 15.5 Augmented Complex Unscented Kalman Filter (ACUKF) 200 15.6 Simulation Examples 203 16 Collaborative Adaptive Filtering 207 16.1 Parametric Signal Modality Characterisation 207 16.2 Standard Hybrid Filtering in R 209 16.3 Tracking the Linear/Nonlinear Nature of Complex Valued Signals 210 16.4 Split vs Fully Complex Signal Natures 214 16.5 Online Assessment of the Nature of Wind Signal 216 16.6 Collaborative Filters for General Complex Signals 217 17 Adaptive Filtering Based on EMD 221 17.1 The Empirical Mode Decomposition Algorithm 222 17.2 Complex Extensions of Empirical Mode Decomposition 226 17.3 Addressing the Problem of Uniqueness 230 17.4 Applications of Complex Extensions of EMD 230 18 Validation of Complex Representations - Is This Worthwhile? 233 18.1 Signal Modality Characterisation in R 234 18.2 Testing for the Validity of Complex Representation 239 18.3 Quantifying Benefits of Complex Valued Representation 243 Appendix A: Some Distinctive Properties of Calculus in C 245 Appendix B: Liouville's Theorem 251 Appendix C: Hypercomplex and Clifford Algebras 253 Appendix D: Real Valued Activation Functions 257 Appendix E: Elementary Transcendental Functions (ETF) 259 Appendix F: The O Notation and Standard Vector and Matrix Differentiation 263 Appendix G: Notions From Learning Theory 265 Appendix H: Notions from Approximation Theory 269 Appendix I: Terminology Used in the Field of Neural Networks 273 Appendix J: Complex Valued Pipelined Recurrent Neural Network (CPRNN) 275 Appendix K: Gradient Adaptive Step Size (GASS) Algorithms in R 279 Appendix L: Derivation of Partial Derivatives from Chapter 8 283 Appendix M: A Posteriori Learning 287 Appendix N: Notions from Stability Theory 291 Appendix O: Linear Relaxation 293 Appendix P: Contraction Mappings, Fixed Point Iteration and Fractals 299 References 309 Index 321