Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler’s delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for…mehr
This work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler’s delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for quantum chemistry, simulating the helium hydride ion. Finally, multiphoton quantum interference in a large Hilbert space is demonstrated, and its implications for computational complexity are examined.
Dr. Peter Shadbolt is a Postdoctoral Researcher in Controlled Quantum Dynamics at Imperial College, London. He completed his PhD in January 2014 at the University of Bristol, where he worked on experimental optical quantum computing using waveguides. Peter’s current research focuses on large-scale architectures for linear-optical quantum computing, as well as potential applications including quantum chemistry and machine learning.
Inhaltsangabe
Introduction and Essential Physics.- A Reconfigurable Two-qubit chip.- A Quantum Delayed-Choice Experiment.- Entanglement and Non locality without a Shared Frame.- Quantum Chemistry on a Photonic Chip.- Increased complexity.- Discussion.
Introduction and Essential Physics.- A Reconfigurable Two-qubit chip.- A Quantum Delayed-Choice Experiment.- Entanglement and Non locality without a Shared Frame.- Quantum Chemistry on a Photonic Chip.- Increased complexity.- Discussion.
Introduction and Essential Physics.- A Reconfigurable Two-qubit chip.- A Quantum Delayed-Choice Experiment.- Entanglement and Non locality without a Shared Frame.- Quantum Chemistry on a Photonic Chip.- Increased complexity.- Discussion.
Introduction and Essential Physics.- A Reconfigurable Two-qubit chip.- A Quantum Delayed-Choice Experiment.- Entanglement and Non locality without a Shared Frame.- Quantum Chemistry on a Photonic Chip.- Increased complexity.- Discussion.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/neu