-48%11
38,66 €
74,99 €**
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
19 °P sammeln
-48%11
38,66 €
74,99 €**
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
19 °P sammeln
Als Download kaufen
74,99 €****
-48%11
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
19 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
74,99 €****
-48%11
38,66 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
19 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 24.02MB
Andere Kunden interessierten sich auch für
- -22%11Karl LaniusPhysik der Elementarteilchen (eBook, PDF)42,99 €
- -48%11Hans-Peter DürrQuanten und Felder (eBook, PDF)38,66 €
- -40%11H. HakenQuantenfeldtheorie des Festkörpers (eBook, PDF)35,96 €
- -20%11Freeman DysonDyson Quantenfeldtheorie (eBook, PDF)39,99 €
- -22%11Lisa EdelhäuserTutorium Quantenfeldtheorie (eBook, PDF)42,99 €
- -26%11G. D. CoughlanElementarteilchen (eBook, PDF)33,26 €
- -20%11Wouter SchmitzTeilchen, Felder und Kräfte (eBook, PDF)59,99 €
-
- -26%11
-
Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 274
- Erscheinungstermin: 8. März 2013
- Deutsch
- ISBN-13: 9783322839015
- Artikelnr.: 53098595
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Summary of contents:
1. The Spinoren field model
2. Covariant dynamics of quantum fields
3. Algebraic Schrödinger presentation
4. Weak mappind theorems
5. Calculation of bound states
6. Effective Yang-Mills-Dynamics
7. Fermions and gravitations
8. Weak mapping theorems and renomination
9. Integal paths and combined particles
10. Fockroom depictions.Notation.- 1 The Spinorfield Model.- 1.1 Introduction.- 1.2 Spinorfield Regularization.- 1.3 Lagrange Formalism.- 1.4 Canonical Spinorfield Quantization.- 1.5 Superindexing.- 1.6 Symmetry Conditions.- 2 Covariant Quantum Field Dynamics.- 2.1 Introduction.- 2.2 Construction of Functional States.- 2.3 Symmetries in Functional Space.- 2.4 Functional Field Equations.- 2.5 Nonperturbative Normalordering.- 2.6 Vertex Renormalization.- 2.7 Limits of Covariant Formalism.- 3 Algebraic Schrödinger Representation.- 3.1 Introduction.- 3.2 Indefinite State Spaces.- 3.3 Probability Interpretation.- 3.4 Nonorthogonal Basis Sets.- 3.5 Cyclic Basis Vector Representations.- 3.6 Renormalized Eigenvalue Equations.- 3.7 Functional Eigenvalue Equations.- 3.8 Normalordering.- 3.9 Covariant Equations on the Hyperplane.- 4 Weak Mapping Theorems.- 4.1 Introduction.- 4.2 Hard Core States.- 4.3 Selfconsistent Propagators.- 4.4 Effective Boson Dynamics.- 4.5 Direct and Exchange Forces.- 4.6 Estimate of Exchange Forces.- 4.7 Weak Mapping in Functional Space.- 4.8 Dressed Particle States.- 4.9 Effective Boson-and Composite Fermion-Dynamics.- 5 Bound State Calculations.- 5.1 Introduction.- 5.2 Covariant Bound State Equations.- 5.3 Vector Boson States.- 5.4 Four-Fermion Bound States.- 5.5 Dressed Fermion States.- 5.6 Metric of Dressed Fermion States.- 6 Effective Yang-Mills Dynamics.- 6.1 Introduction.- 6.2 Effective Boson-Fermion Dynamics.- 6.3 Boson States and Dual States.- 6.4 Evaluation of the Map.- 6.5 Quantum Properties of Mapped Fields.- 6.6 Effective Boson-Fermion Lagrangian.- 7 Fermions and Gravitation.- 7.1 Introduction.- 7.2 Anholonomic Spinor Connections.- 7.3 Weak Mapping with Gravitons.- 7.4 Graviton States.- 7.5 Dressed Fermion State Calculations.- 7.6 Fermion-Graviton Coupling.- 8 WeakMapping and Gauge Fields.- 8.1 Introduction.- 8.2 Spinor Electrodynamics in Coulomb Gauge.- 8.3 Quantization of Spinor Electrodynamics..- 8.4 Composite Particle Dynamics.- 8.5 Nonabelian Quantum Fields in Temporal Gauge.- 9 Superconductivity and Higgs Fields.- 9.1 Introduction.- 9.2 Selfconsistent Propagators and States.- 9.3 Spectrum of Bound States.- 9.4 Ginzburg-Landau Equation.- 9.5 Electrical Resistance.- 9.6 Thermostates and Weak Mapping.- 10 Path Integrals and Effective Theories.- 10.1 Introduction.- 10.2 Functional Perturbation Theory and Path Integrals.- 10.3 HadronizationofQCD.- 10.4 Composite Particles and Field Operator Products.- 10.5 Evaluation of Fermion Determinants.- 10.6 Conclusions.- 11 Fock Space Mappings.- 11.1 Introduction.- 11.2 Ideal and Physical Boson Spaces.- 11.3 Usui Mappings.- 11.4 Boson Mapping and Effective Dynamics.
1. The Spinoren field model
2. Covariant dynamics of quantum fields
3. Algebraic Schrödinger presentation
4. Weak mappind theorems
5. Calculation of bound states
6. Effective Yang-Mills-Dynamics
7. Fermions and gravitations
8. Weak mapping theorems and renomination
9. Integal paths and combined particles
10. Fockroom depictions.Notation.- 1 The Spinorfield Model.- 1.1 Introduction.- 1.2 Spinorfield Regularization.- 1.3 Lagrange Formalism.- 1.4 Canonical Spinorfield Quantization.- 1.5 Superindexing.- 1.6 Symmetry Conditions.- 2 Covariant Quantum Field Dynamics.- 2.1 Introduction.- 2.2 Construction of Functional States.- 2.3 Symmetries in Functional Space.- 2.4 Functional Field Equations.- 2.5 Nonperturbative Normalordering.- 2.6 Vertex Renormalization.- 2.7 Limits of Covariant Formalism.- 3 Algebraic Schrödinger Representation.- 3.1 Introduction.- 3.2 Indefinite State Spaces.- 3.3 Probability Interpretation.- 3.4 Nonorthogonal Basis Sets.- 3.5 Cyclic Basis Vector Representations.- 3.6 Renormalized Eigenvalue Equations.- 3.7 Functional Eigenvalue Equations.- 3.8 Normalordering.- 3.9 Covariant Equations on the Hyperplane.- 4 Weak Mapping Theorems.- 4.1 Introduction.- 4.2 Hard Core States.- 4.3 Selfconsistent Propagators.- 4.4 Effective Boson Dynamics.- 4.5 Direct and Exchange Forces.- 4.6 Estimate of Exchange Forces.- 4.7 Weak Mapping in Functional Space.- 4.8 Dressed Particle States.- 4.9 Effective Boson-and Composite Fermion-Dynamics.- 5 Bound State Calculations.- 5.1 Introduction.- 5.2 Covariant Bound State Equations.- 5.3 Vector Boson States.- 5.4 Four-Fermion Bound States.- 5.5 Dressed Fermion States.- 5.6 Metric of Dressed Fermion States.- 6 Effective Yang-Mills Dynamics.- 6.1 Introduction.- 6.2 Effective Boson-Fermion Dynamics.- 6.3 Boson States and Dual States.- 6.4 Evaluation of the Map.- 6.5 Quantum Properties of Mapped Fields.- 6.6 Effective Boson-Fermion Lagrangian.- 7 Fermions and Gravitation.- 7.1 Introduction.- 7.2 Anholonomic Spinor Connections.- 7.3 Weak Mapping with Gravitons.- 7.4 Graviton States.- 7.5 Dressed Fermion State Calculations.- 7.6 Fermion-Graviton Coupling.- 8 WeakMapping and Gauge Fields.- 8.1 Introduction.- 8.2 Spinor Electrodynamics in Coulomb Gauge.- 8.3 Quantization of Spinor Electrodynamics..- 8.4 Composite Particle Dynamics.- 8.5 Nonabelian Quantum Fields in Temporal Gauge.- 9 Superconductivity and Higgs Fields.- 9.1 Introduction.- 9.2 Selfconsistent Propagators and States.- 9.3 Spectrum of Bound States.- 9.4 Ginzburg-Landau Equation.- 9.5 Electrical Resistance.- 9.6 Thermostates and Weak Mapping.- 10 Path Integrals and Effective Theories.- 10.1 Introduction.- 10.2 Functional Perturbation Theory and Path Integrals.- 10.3 HadronizationofQCD.- 10.4 Composite Particles and Field Operator Products.- 10.5 Evaluation of Fermion Determinants.- 10.6 Conclusions.- 11 Fock Space Mappings.- 11.1 Introduction.- 11.2 Ideal and Physical Boson Spaces.- 11.3 Usui Mappings.- 11.4 Boson Mapping and Effective Dynamics.
Summary of contents:
1. The Spinoren field model
2. Covariant dynamics of quantum fields
3. Algebraic Schrödinger presentation
4. Weak mappind theorems
5. Calculation of bound states
6. Effective Yang-Mills-Dynamics
7. Fermions and gravitations
8. Weak mapping theorems and renomination
9. Integal paths and combined particles
10. Fockroom depictions.Notation.- 1 The Spinorfield Model.- 1.1 Introduction.- 1.2 Spinorfield Regularization.- 1.3 Lagrange Formalism.- 1.4 Canonical Spinorfield Quantization.- 1.5 Superindexing.- 1.6 Symmetry Conditions.- 2 Covariant Quantum Field Dynamics.- 2.1 Introduction.- 2.2 Construction of Functional States.- 2.3 Symmetries in Functional Space.- 2.4 Functional Field Equations.- 2.5 Nonperturbative Normalordering.- 2.6 Vertex Renormalization.- 2.7 Limits of Covariant Formalism.- 3 Algebraic Schrödinger Representation.- 3.1 Introduction.- 3.2 Indefinite State Spaces.- 3.3 Probability Interpretation.- 3.4 Nonorthogonal Basis Sets.- 3.5 Cyclic Basis Vector Representations.- 3.6 Renormalized Eigenvalue Equations.- 3.7 Functional Eigenvalue Equations.- 3.8 Normalordering.- 3.9 Covariant Equations on the Hyperplane.- 4 Weak Mapping Theorems.- 4.1 Introduction.- 4.2 Hard Core States.- 4.3 Selfconsistent Propagators.- 4.4 Effective Boson Dynamics.- 4.5 Direct and Exchange Forces.- 4.6 Estimate of Exchange Forces.- 4.7 Weak Mapping in Functional Space.- 4.8 Dressed Particle States.- 4.9 Effective Boson-and Composite Fermion-Dynamics.- 5 Bound State Calculations.- 5.1 Introduction.- 5.2 Covariant Bound State Equations.- 5.3 Vector Boson States.- 5.4 Four-Fermion Bound States.- 5.5 Dressed Fermion States.- 5.6 Metric of Dressed Fermion States.- 6 Effective Yang-Mills Dynamics.- 6.1 Introduction.- 6.2 Effective Boson-Fermion Dynamics.- 6.3 Boson States and Dual States.- 6.4 Evaluation of the Map.- 6.5 Quantum Properties of Mapped Fields.- 6.6 Effective Boson-Fermion Lagrangian.- 7 Fermions and Gravitation.- 7.1 Introduction.- 7.2 Anholonomic Spinor Connections.- 7.3 Weak Mapping with Gravitons.- 7.4 Graviton States.- 7.5 Dressed Fermion State Calculations.- 7.6 Fermion-Graviton Coupling.- 8 WeakMapping and Gauge Fields.- 8.1 Introduction.- 8.2 Spinor Electrodynamics in Coulomb Gauge.- 8.3 Quantization of Spinor Electrodynamics..- 8.4 Composite Particle Dynamics.- 8.5 Nonabelian Quantum Fields in Temporal Gauge.- 9 Superconductivity and Higgs Fields.- 9.1 Introduction.- 9.2 Selfconsistent Propagators and States.- 9.3 Spectrum of Bound States.- 9.4 Ginzburg-Landau Equation.- 9.5 Electrical Resistance.- 9.6 Thermostates and Weak Mapping.- 10 Path Integrals and Effective Theories.- 10.1 Introduction.- 10.2 Functional Perturbation Theory and Path Integrals.- 10.3 HadronizationofQCD.- 10.4 Composite Particles and Field Operator Products.- 10.5 Evaluation of Fermion Determinants.- 10.6 Conclusions.- 11 Fock Space Mappings.- 11.1 Introduction.- 11.2 Ideal and Physical Boson Spaces.- 11.3 Usui Mappings.- 11.4 Boson Mapping and Effective Dynamics.
1. The Spinoren field model
2. Covariant dynamics of quantum fields
3. Algebraic Schrödinger presentation
4. Weak mappind theorems
5. Calculation of bound states
6. Effective Yang-Mills-Dynamics
7. Fermions and gravitations
8. Weak mapping theorems and renomination
9. Integal paths and combined particles
10. Fockroom depictions.Notation.- 1 The Spinorfield Model.- 1.1 Introduction.- 1.2 Spinorfield Regularization.- 1.3 Lagrange Formalism.- 1.4 Canonical Spinorfield Quantization.- 1.5 Superindexing.- 1.6 Symmetry Conditions.- 2 Covariant Quantum Field Dynamics.- 2.1 Introduction.- 2.2 Construction of Functional States.- 2.3 Symmetries in Functional Space.- 2.4 Functional Field Equations.- 2.5 Nonperturbative Normalordering.- 2.6 Vertex Renormalization.- 2.7 Limits of Covariant Formalism.- 3 Algebraic Schrödinger Representation.- 3.1 Introduction.- 3.2 Indefinite State Spaces.- 3.3 Probability Interpretation.- 3.4 Nonorthogonal Basis Sets.- 3.5 Cyclic Basis Vector Representations.- 3.6 Renormalized Eigenvalue Equations.- 3.7 Functional Eigenvalue Equations.- 3.8 Normalordering.- 3.9 Covariant Equations on the Hyperplane.- 4 Weak Mapping Theorems.- 4.1 Introduction.- 4.2 Hard Core States.- 4.3 Selfconsistent Propagators.- 4.4 Effective Boson Dynamics.- 4.5 Direct and Exchange Forces.- 4.6 Estimate of Exchange Forces.- 4.7 Weak Mapping in Functional Space.- 4.8 Dressed Particle States.- 4.9 Effective Boson-and Composite Fermion-Dynamics.- 5 Bound State Calculations.- 5.1 Introduction.- 5.2 Covariant Bound State Equations.- 5.3 Vector Boson States.- 5.4 Four-Fermion Bound States.- 5.5 Dressed Fermion States.- 5.6 Metric of Dressed Fermion States.- 6 Effective Yang-Mills Dynamics.- 6.1 Introduction.- 6.2 Effective Boson-Fermion Dynamics.- 6.3 Boson States and Dual States.- 6.4 Evaluation of the Map.- 6.5 Quantum Properties of Mapped Fields.- 6.6 Effective Boson-Fermion Lagrangian.- 7 Fermions and Gravitation.- 7.1 Introduction.- 7.2 Anholonomic Spinor Connections.- 7.3 Weak Mapping with Gravitons.- 7.4 Graviton States.- 7.5 Dressed Fermion State Calculations.- 7.6 Fermion-Graviton Coupling.- 8 WeakMapping and Gauge Fields.- 8.1 Introduction.- 8.2 Spinor Electrodynamics in Coulomb Gauge.- 8.3 Quantization of Spinor Electrodynamics..- 8.4 Composite Particle Dynamics.- 8.5 Nonabelian Quantum Fields in Temporal Gauge.- 9 Superconductivity and Higgs Fields.- 9.1 Introduction.- 9.2 Selfconsistent Propagators and States.- 9.3 Spectrum of Bound States.- 9.4 Ginzburg-Landau Equation.- 9.5 Electrical Resistance.- 9.6 Thermostates and Weak Mapping.- 10 Path Integrals and Effective Theories.- 10.1 Introduction.- 10.2 Functional Perturbation Theory and Path Integrals.- 10.3 HadronizationofQCD.- 10.4 Composite Particles and Field Operator Products.- 10.5 Evaluation of Fermion Determinants.- 10.6 Conclusions.- 11 Fock Space Mappings.- 11.1 Introduction.- 11.2 Ideal and Physical Boson Spaces.- 11.3 Usui Mappings.- 11.4 Boson Mapping and Effective Dynamics.