Composites Materials for Food Packaging (eBook, PDF)
Redaktion: Cirilo, Giuseppe; Spizzirri, Umile Gianfranco; Kozlowski, Marek A.
Alle Infos zum eBook verschenken
Composites Materials for Food Packaging (eBook, PDF)
Redaktion: Cirilo, Giuseppe; Spizzirri, Umile Gianfranco; Kozlowski, Marek A.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The novel insights, as well as the main drawbacks of each engineered composites material is extensively evaluated taking into account the strong relationship between packaging materials, environmental and reusability concerns, food quality, and nutritional value. Composites, by matching the properties of different components, allow the development of innovative and performing strategies for intelligent food packaging, thus overcoming the limitations of using only a single material. The book starts with the description of montmorillonite and halloysite composites, subsequently moving to…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.45MB
- Frederic DebeaufortPackaging Materials and Processing for Food, Pharmaceuticals and Cosmetics (eBook, PDF)139,99 €
- Richard ColesFood and Beverage Packaging Technology (eBook, PDF)177,99 €
- Rafael A. AurasLife Cycle of Sustainable Packaging (eBook, PDF)130,99 €
- Handbook of Paper and Paperboard Packaging Technology (eBook, PDF)163,99 €
- Dong Sun LeeModified Atmosphere Packaging of Foods (eBook, PDF)176,99 €
- The Wiley Encyclopedia of Packaging Technology (eBook, PDF)432,99 €
- Biopolymer-Based Food Packaging (eBook, PDF)173,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 462
- Erscheinungstermin: 4. Mai 2018
- Englisch
- ISBN-13: 9781119160212
- Artikelnr.: 53028280
- Verlag: Wiley
- Seitenzahl: 462
- Erscheinungstermin: 4. Mai 2018
- Englisch
- ISBN-13: 9781119160212
- Artikelnr.: 53028280
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
and Cornelia Vasile 2.1 Halloysite 74 2.1.1 Molecular and Crystalline Structure 74 2.1.2 Properties 77 2.1.3 Surface Modification of HAL 78 2.1.3.1 Modification of the External Surface 79 2.1.3.2 Modification by Click Chemistry 80 2.2 Nanocomposites Containing HAL 80 2.2.1 HAL Containing Non-Degradable Synthetic Polymeric Nanocomposites for Food Packaging Applications 81 2.2.1.1 Processing Strategies 81 2.2.1.2 Polyolefins/HNTs Nanocomposites 83 2.2.1.3 Polystyrene/HNTs Nanocomposites 94 2.2.1.4 Polyamide/HNTs Nanocomposites 95 2.2.1.5 PET/HNTs Nanocomposites 97 2.2.1.6 Elastomers(Rubbers)/HNTs Nanocomposites 97 2.2.1.7 Epoxy/HNTs Nanocomposites 98 2.2.2 HAL-Containing Degradable Polymeric Bionanocomposites for Food Packaging 98 2.2.2.1 Preparation of HNT-Containing Degradable Nanocomposites 99 2.2.2.2 Properties of HNT-Containing Degradable Nanocomposites 101 2.2.2.3 Polyvinyl Alcohol (PVOH)/HNT 101 2.2.2.4 Polyalkanoates/HNT Nanocomposites 106 2.2.2.5 PLA/Halloysite Biocomposites 106 2.2.2.6 Polysaccharide-HNT Composites 107 2.2.2.7 Lignocellulose/Wood Fibers/HAL Clay Composites 109 2.2.2.8 Polysaccharides/HAL Clay Composites 110 2.2.2.9 Proteins/HNT Biocomposites 111 2.2.2.10 Natural Rubber/HNTs Composites 111 2.3 Conclusion 112 References 112 3 Silver Composite Materials and Food Packaging 123 Amalia I. Cano, Amparo Chiralt and Chelo González-Martínez 3.1 Silver and Silver Compounds as Active Agents 124 3.1.1 History and Background 124 3.1.2 Chemical Species of Silver 125 3.1.3 Silver in Polymeric Matrices for Food Packaging Purposes 130 3.1.3.1 Different Methodologies to Incorporate Silver and Silver Species into Packaging Materials 130 3.1.3.2 Functional Characterization of Silver-Enriched Packaging Materials 131 3.1.4 Current Legislation Applied to Silver Composite Materials Used for Food Packaging 144 3.2 Conclusions 144 References 145 4 Zinc Composite Materials and Food Packaging 153 R. Venkatesan, T. Thendral Thiyagu and N. Rajeswari 4.1 Introduction 153 4.2 Food Packaging 154 4.3 Polymers in Food Packaging 154 4.4 Nanotechnology 156 4.5 Nano-Fillers 156 4.6 Classification of Nano-fillers 157 4.7 ZnO Nanoparticles 157 4.7.1 Advantages of ZnO Nanoparticles 157 4.7.2 Limitations of ZnO Nanoparticles 158 4.8 Composites 159 4.8.1 Classification of Composites 159 4.8.1.1 Metal Matrix Composites 159 4.8.1.2 Ceramic Matrix Composites 159 4.8.1.3 Polymer Matrix Composites 159 4.8.2 Components of Composites 159 4.8.2.1 Matrix 159 4.8.2.2 Fillers 160 4.8.2.3 Nanocomposites 160 4.8.3 Preparation of Nanocomposites 161 4.8.3.1 Solution Casting 161 4.8.3.2 In Situ Polymerization 162 4.8.3.3 Melt Extrusion 162 4.8.4 Properties of Nanocomposites 163 4.8.4.1 Mechanical Properties 163 4.8.4.2 Thermal Properties 163 4.8.4.3 Barrier Properties 163 4.8.4.4 Antimicrobial Properties 164 4.8.5 Applications of Nanocomposites 164 4.8.6 ZnO-Based Composites in Food Packaging 164 4.8.6.1 Preparation of ZnO Composites 166 4.8.6.2 Morphology of the ZnO Composites 167 4.8.6.3 Mechanical Properties of ZnO Composites 167 4.8.6.4 Barrier Properties of ZnO Composites 169 4.9 Conclusions 171 References 172 5 Silicium-Based Nanocomposite Materials for Food Packaging Applications 175 Tanja Radusin, Ivan Risti
, Branka Pili
, Donatella Duraccio and Aleksandra Novakovi
5.1 Introduction 176 5.2 Nanosilica/Polymer Composites 178 5.2.1 Composite Preparation 179 5.2.1.1 Blending 179 5.2.1.2 Sol-Gel Process 181 5.2.1.3 In Situ Polymerization 181 5.3 Characterization of Polymer/Nancomposites 181 5.3.1 Morphology 182 5.3.2 Physical-Chemical Properties 184 5.3.2.1 Thermal Properties 184 5.3.2.2 Mechanical Properties 186 5.3.2.3 Crystallization of Polymer/Silica Nanocomposites 187 5.3.3 Barrier Properties 195 5.3.4 Optical Properties 196 5.3.5 Antimicrobial Properties 196 5.4 Conclusion 198 References 198 6 Nanoiron-Based Composite Oxygen Scavengers for Food Packaging 209 Zenon Foltynowicz 6.1 Introduction 210 6.1.1 The Effect of Oxygen on Packed Products 210 6.1.2 The Need of Oxygen Scavengers 211 6.2 Characteristics of Oxygen Scavengers 212 6.2.1 Types and Classification of Oxygen Absorbers 212 6.2.2 Iron-Based Oxygen Scavengers 213 6.2.3 The Factors Influences the Efficiency of Iron-Based Oxygen Scavengers 214 6.3 Nanomaterials and Nanoiron 216 6.3.1 Nanomaterials Property 216 6.3.2 Nanoiron Property 216 6.3.3 Nanoiron Preparation 217 6.4 Nanoiron-Based Composite Oxygen Scavengers 219 6.4.1 Why Nanoiron? 219 6.4.2 Nanoiron with Specific Properties 221 6.4.3 Composite Oxygen Scavengers Based on Nanoiron 223 6.4.4 Safety of the Use of Composite Oxygen Scavengers Based on Nanoiron 226 References 227 7 Carbon Nanotubes (CNTs) Composite Materials and Food Packaging 235 Dan Xu 7.1 Introductions on Carbon Nanotubes 236 7.2 Polymer/CNTs Composite Materials 236 7.2.1 Modification of CNTs 237 7.2.2 Fabrication Method 238 7.2.3 Properties 238 7.3 Safety Issues of CNTs and Polymer/CNTs Composites 243 7.3.1 Toxicity of CNTs 243 7.3.2 Migration of CNTs from Polymer/CNTs Composites 243 7.4 Outlook 244 References 244 8 Polymer/Graphene Nanocomposites for Food Packaging 251 Steven Merritt, Chaoying Wan, Barbara Shollock, Samson Patole and David M. Haddleton 8.1 Polymers for Food Packaging 251 8.2 Polymers for Steel Can Packaging 252 8.3 Water Permeation and Anticorrosion of Polymer Coatings 253 8.4 Polymer-Food Interactions 255 8.5 Polymer/Clay Nanocomposites 255 8.6 Polymer/Graphene Nanocomposites 257 8.6.1 Graphene and its Derivatives for Food Packaging 257 8.6.2 Biodegradable Polymer/Graphene Nanocomposites 259 8.6.3 Synthetic Polymer/Graphene Nanocomposites 262 8.7 Summary and Outlook 263 References 264 9 Biodegradability and Compostability of Food Nanopackaging Materials 269 Tomy J. Gutiérrez 9.1 Introduction 269 9.2 Biodegradability and Compostability 270 9.3 Biodegradability and Compostability of Food Nanopackaging Materials 274 9.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Biopolymers 276 9.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Nanoclays 277 9.3.3 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites 279 9.3.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites - Biopolymers/Nanoclays 281 9.3.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites - Biopolymer/ Nanocellulosic Materials 287 9.4 Conclusion 288 Conflicts of Interest 290 Acknowledgments 290 References 290 10 Nanocellulose in Food Packaging 297 Paula Criado, Farah M. J. Hossain, Stéphane Salmieri and Monique Lacroix 10.1 Antimicrobial Effectiveness of Biopolymeric Films/Coatings Containing Cellulose Nanostructures 298 10.1.1 Biopolymeric Films Containing CNCs 298 10.1.2 Bioactive Films Containing CNFs 305 10.1.3 Nanostructured Bio-Based Bacterial Cellulose (BC)-Containing Films 306 10.2 Physicochemical Properties of Bio-Nanocomposites Materials Reinforced with CNC 307 10.3 Enhancement of the Mechanical Properties of Polymers with CNC 308 10.4 Enhancement of the Barrier Properties of Polymers with CNC 309 10.5 Research Works on CNC as Biodegradable Reinforcement and Barrier Component 310 10.5.1 Grafting of Cellulose Nanocrystals for Food Packaging 312 10.5.2 TEMPO-Mediated Oxidation of Nanocellulose 312 10.5.3 Functionalization of Nanocellulose via TEMPO-Mediated Oxidation 313 10.5.4 Cationization of Nanocellulose with Antimicrobial Purposes 314 10.5.5 Esterification 316 10.5.6 Non-Covalent Surface Chemical Modification 317 10.5.7 Polymerization of Bioactive Compounds onto Nanocellulose Surface 318 10.6 Conclusion 319 References 320 11 Nanocellulose in Combination with Inorganic/Organic Biocides for Food Film Packaging Applications - Safety Issues Review 331 Kelsey L O'Donnell, Gloria S. Oporto and Noelle Comolli 11.1 Introduction 332 11.1.1 Typical Polymers and Processes Used to Prepare Flexible Films in the Packaging Industry 332 11.1.2 Current Organic and Inorganic Antimicrobial Materials (Biocides) Used in Packaging and Correlating Processing Conditions 334 11.1.3 Release of Active Components (Biocides) From Packaging Films - Tentative Mechanisms 336 11.2 Nanocellulose in Flexible Film Food Packaging 336 11.2.1 Current Forms of Cellulose Used in Packaging 336 11.2.2 Nanocellulose in Flexible Film Food Packaging 337 11.2.3 Nanocellulose in Combination with Organic and Inorganic Antimicrobial Materials 339 11.2.4 Nanocelulose in Combination with Copper and Benzalkounium Chloride - West Virginia University (WVU) Preliminary Results 341 11.2.4.1 Nanocellulose - Copper/Zinc: Synergistic Effect (Preliminary Experiments) 342 11.2.4.2 Nanocellulose - Benzalkonium Chloride (BZK) (Preliminary Experiments) 342 11.3 Health and Environmental Toxicity Evaluations of Active Antimicrobial Packaging 343 11.3.1 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) - the United States 344 11.3.2 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) - Europe 345 11.3.3 Specific Toxic Evaluation on Cellulosic and Nanocellulosic Materials 348 References 350 12 Composite Materials Based on PLA and its Applications in Food Packaging 355 Jesús R. Rodríguez-Núñez, Tomás J. Madera-Santana, Heidy Burrola-Núñez and Efrén G. Martínez-Encinas 12.1 Introduction 356 12.2 Synthesis of Polylactic Acid 356 12.3 Reinforcing Agents 359 12.3.1 Natural Fibers and Fillers 360 12.3.2 Synthetic Fibers and Fillers 366 12.4 Surface Modification of Fibers and Fillers 366 12.4.1 Physical Methods (Corona, Plasma, Irradiation Treatments) 367 12.4.2 Chemical Methods (Alkaline, Acetylation, Maleation, Silane, Enzymatic Treatment) 368 12.5 Nanostructures in the PLA Matrix 370 12.6 Processing Techniques 371 12.6.1 Processing Technologies of PLA Composites 372 12.6.1.1 Compression Molding 372 12.6.1.2 Extrusion 374 12.6.1.3 Injection Molding 375 12.6.1.4 Extrusion or Injection Blow Molding 377 12.6.1.5 Calendering, Cast Film, and Sheet 378 12.6.1.6 Thermoforming 379 12.6.1.7 Foaming PLA 379 12.7 Properties Related to Packaging Applications 381 12.7.1 Physical Properties 382 12.7.2 Mechanical Properties 384 12.7.3 Thermal Properties 385 12.7.4 Functional Properties 387 12.8 Recyclability of PLA 388 12.9 Biodegradation of PLA 389 12.10 Future Tendencies 390 References 391 13 Nanomaterial Migration from Composites into Food Matrices 401 Victor Gomes Lauriano Souza, Regiane Ribeiro-Santos, Patricia Freitas Rodrigues, Caio Gomide Otoni, Maria Paula Duarte, Isabel M. Coelhoso and Ana Luisa Fernando 13.1 Introduction 402 13.2 Nanotechnology in the Food Industry 403 13.2.1 Nanoparticle Characterization Techniques 403 13.2.2 Nanoparticle Characterization in Food Matrices 406 13.2.3 Nanomaterial Migration from Composites into Food Matrices: Case Studies 407 13.3 Nanoparticle Toxicology 413 13.3.1 Toxicological Tests 415 13.3.2 Toxicological Studies of ENMs Used in the Food Packaging Industry 417 13.3.3 Ecotoxicology of ENMs 419 13.4 Migration Assays and Current Legislation 420 13.4.1 Food Contact Nanomaterials 424 13.5 Conclusion 426 Acknowledgments 427 References 427 Index 437
and Cornelia Vasile 2.1 Halloysite 74 2.1.1 Molecular and Crystalline Structure 74 2.1.2 Properties 77 2.1.3 Surface Modification of HAL 78 2.1.3.1 Modification of the External Surface 79 2.1.3.2 Modification by Click Chemistry 80 2.2 Nanocomposites Containing HAL 80 2.2.1 HAL Containing Non-Degradable Synthetic Polymeric Nanocomposites for Food Packaging Applications 81 2.2.1.1 Processing Strategies 81 2.2.1.2 Polyolefins/HNTs Nanocomposites 83 2.2.1.3 Polystyrene/HNTs Nanocomposites 94 2.2.1.4 Polyamide/HNTs Nanocomposites 95 2.2.1.5 PET/HNTs Nanocomposites 97 2.2.1.6 Elastomers(Rubbers)/HNTs Nanocomposites 97 2.2.1.7 Epoxy/HNTs Nanocomposites 98 2.2.2 HAL-Containing Degradable Polymeric Bionanocomposites for Food Packaging 98 2.2.2.1 Preparation of HNT-Containing Degradable Nanocomposites 99 2.2.2.2 Properties of HNT-Containing Degradable Nanocomposites 101 2.2.2.3 Polyvinyl Alcohol (PVOH)/HNT 101 2.2.2.4 Polyalkanoates/HNT Nanocomposites 106 2.2.2.5 PLA/Halloysite Biocomposites 106 2.2.2.6 Polysaccharide-HNT Composites 107 2.2.2.7 Lignocellulose/Wood Fibers/HAL Clay Composites 109 2.2.2.8 Polysaccharides/HAL Clay Composites 110 2.2.2.9 Proteins/HNT Biocomposites 111 2.2.2.10 Natural Rubber/HNTs Composites 111 2.3 Conclusion 112 References 112 3 Silver Composite Materials and Food Packaging 123 Amalia I. Cano, Amparo Chiralt and Chelo González-Martínez 3.1 Silver and Silver Compounds as Active Agents 124 3.1.1 History and Background 124 3.1.2 Chemical Species of Silver 125 3.1.3 Silver in Polymeric Matrices for Food Packaging Purposes 130 3.1.3.1 Different Methodologies to Incorporate Silver and Silver Species into Packaging Materials 130 3.1.3.2 Functional Characterization of Silver-Enriched Packaging Materials 131 3.1.4 Current Legislation Applied to Silver Composite Materials Used for Food Packaging 144 3.2 Conclusions 144 References 145 4 Zinc Composite Materials and Food Packaging 153 R. Venkatesan, T. Thendral Thiyagu and N. Rajeswari 4.1 Introduction 153 4.2 Food Packaging 154 4.3 Polymers in Food Packaging 154 4.4 Nanotechnology 156 4.5 Nano-Fillers 156 4.6 Classification of Nano-fillers 157 4.7 ZnO Nanoparticles 157 4.7.1 Advantages of ZnO Nanoparticles 157 4.7.2 Limitations of ZnO Nanoparticles 158 4.8 Composites 159 4.8.1 Classification of Composites 159 4.8.1.1 Metal Matrix Composites 159 4.8.1.2 Ceramic Matrix Composites 159 4.8.1.3 Polymer Matrix Composites 159 4.8.2 Components of Composites 159 4.8.2.1 Matrix 159 4.8.2.2 Fillers 160 4.8.2.3 Nanocomposites 160 4.8.3 Preparation of Nanocomposites 161 4.8.3.1 Solution Casting 161 4.8.3.2 In Situ Polymerization 162 4.8.3.3 Melt Extrusion 162 4.8.4 Properties of Nanocomposites 163 4.8.4.1 Mechanical Properties 163 4.8.4.2 Thermal Properties 163 4.8.4.3 Barrier Properties 163 4.8.4.4 Antimicrobial Properties 164 4.8.5 Applications of Nanocomposites 164 4.8.6 ZnO-Based Composites in Food Packaging 164 4.8.6.1 Preparation of ZnO Composites 166 4.8.6.2 Morphology of the ZnO Composites 167 4.8.6.3 Mechanical Properties of ZnO Composites 167 4.8.6.4 Barrier Properties of ZnO Composites 169 4.9 Conclusions 171 References 172 5 Silicium-Based Nanocomposite Materials for Food Packaging Applications 175 Tanja Radusin, Ivan Risti
, Branka Pili
, Donatella Duraccio and Aleksandra Novakovi
5.1 Introduction 176 5.2 Nanosilica/Polymer Composites 178 5.2.1 Composite Preparation 179 5.2.1.1 Blending 179 5.2.1.2 Sol-Gel Process 181 5.2.1.3 In Situ Polymerization 181 5.3 Characterization of Polymer/Nancomposites 181 5.3.1 Morphology 182 5.3.2 Physical-Chemical Properties 184 5.3.2.1 Thermal Properties 184 5.3.2.2 Mechanical Properties 186 5.3.2.3 Crystallization of Polymer/Silica Nanocomposites 187 5.3.3 Barrier Properties 195 5.3.4 Optical Properties 196 5.3.5 Antimicrobial Properties 196 5.4 Conclusion 198 References 198 6 Nanoiron-Based Composite Oxygen Scavengers for Food Packaging 209 Zenon Foltynowicz 6.1 Introduction 210 6.1.1 The Effect of Oxygen on Packed Products 210 6.1.2 The Need of Oxygen Scavengers 211 6.2 Characteristics of Oxygen Scavengers 212 6.2.1 Types and Classification of Oxygen Absorbers 212 6.2.2 Iron-Based Oxygen Scavengers 213 6.2.3 The Factors Influences the Efficiency of Iron-Based Oxygen Scavengers 214 6.3 Nanomaterials and Nanoiron 216 6.3.1 Nanomaterials Property 216 6.3.2 Nanoiron Property 216 6.3.3 Nanoiron Preparation 217 6.4 Nanoiron-Based Composite Oxygen Scavengers 219 6.4.1 Why Nanoiron? 219 6.4.2 Nanoiron with Specific Properties 221 6.4.3 Composite Oxygen Scavengers Based on Nanoiron 223 6.4.4 Safety of the Use of Composite Oxygen Scavengers Based on Nanoiron 226 References 227 7 Carbon Nanotubes (CNTs) Composite Materials and Food Packaging 235 Dan Xu 7.1 Introductions on Carbon Nanotubes 236 7.2 Polymer/CNTs Composite Materials 236 7.2.1 Modification of CNTs 237 7.2.2 Fabrication Method 238 7.2.3 Properties 238 7.3 Safety Issues of CNTs and Polymer/CNTs Composites 243 7.3.1 Toxicity of CNTs 243 7.3.2 Migration of CNTs from Polymer/CNTs Composites 243 7.4 Outlook 244 References 244 8 Polymer/Graphene Nanocomposites for Food Packaging 251 Steven Merritt, Chaoying Wan, Barbara Shollock, Samson Patole and David M. Haddleton 8.1 Polymers for Food Packaging 251 8.2 Polymers for Steel Can Packaging 252 8.3 Water Permeation and Anticorrosion of Polymer Coatings 253 8.4 Polymer-Food Interactions 255 8.5 Polymer/Clay Nanocomposites 255 8.6 Polymer/Graphene Nanocomposites 257 8.6.1 Graphene and its Derivatives for Food Packaging 257 8.6.2 Biodegradable Polymer/Graphene Nanocomposites 259 8.6.3 Synthetic Polymer/Graphene Nanocomposites 262 8.7 Summary and Outlook 263 References 264 9 Biodegradability and Compostability of Food Nanopackaging Materials 269 Tomy J. Gutiérrez 9.1 Introduction 269 9.2 Biodegradability and Compostability 270 9.3 Biodegradability and Compostability of Food Nanopackaging Materials 274 9.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Biopolymers 276 9.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Nanoclays 277 9.3.3 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites 279 9.3.3.1 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites - Biopolymers/Nanoclays 281 9.3.3.2 Biodegradability and Compostability of Food Nanopackaging Made from Bionanocomposites - Biopolymer/ Nanocellulosic Materials 287 9.4 Conclusion 288 Conflicts of Interest 290 Acknowledgments 290 References 290 10 Nanocellulose in Food Packaging 297 Paula Criado, Farah M. J. Hossain, Stéphane Salmieri and Monique Lacroix 10.1 Antimicrobial Effectiveness of Biopolymeric Films/Coatings Containing Cellulose Nanostructures 298 10.1.1 Biopolymeric Films Containing CNCs 298 10.1.2 Bioactive Films Containing CNFs 305 10.1.3 Nanostructured Bio-Based Bacterial Cellulose (BC)-Containing Films 306 10.2 Physicochemical Properties of Bio-Nanocomposites Materials Reinforced with CNC 307 10.3 Enhancement of the Mechanical Properties of Polymers with CNC 308 10.4 Enhancement of the Barrier Properties of Polymers with CNC 309 10.5 Research Works on CNC as Biodegradable Reinforcement and Barrier Component 310 10.5.1 Grafting of Cellulose Nanocrystals for Food Packaging 312 10.5.2 TEMPO-Mediated Oxidation of Nanocellulose 312 10.5.3 Functionalization of Nanocellulose via TEMPO-Mediated Oxidation 313 10.5.4 Cationization of Nanocellulose with Antimicrobial Purposes 314 10.5.5 Esterification 316 10.5.6 Non-Covalent Surface Chemical Modification 317 10.5.7 Polymerization of Bioactive Compounds onto Nanocellulose Surface 318 10.6 Conclusion 319 References 320 11 Nanocellulose in Combination with Inorganic/Organic Biocides for Food Film Packaging Applications - Safety Issues Review 331 Kelsey L O'Donnell, Gloria S. Oporto and Noelle Comolli 11.1 Introduction 332 11.1.1 Typical Polymers and Processes Used to Prepare Flexible Films in the Packaging Industry 332 11.1.2 Current Organic and Inorganic Antimicrobial Materials (Biocides) Used in Packaging and Correlating Processing Conditions 334 11.1.3 Release of Active Components (Biocides) From Packaging Films - Tentative Mechanisms 336 11.2 Nanocellulose in Flexible Film Food Packaging 336 11.2.1 Current Forms of Cellulose Used in Packaging 336 11.2.2 Nanocellulose in Flexible Film Food Packaging 337 11.2.3 Nanocellulose in Combination with Organic and Inorganic Antimicrobial Materials 339 11.2.4 Nanocelulose in Combination with Copper and Benzalkounium Chloride - West Virginia University (WVU) Preliminary Results 341 11.2.4.1 Nanocellulose - Copper/Zinc: Synergistic Effect (Preliminary Experiments) 342 11.2.4.2 Nanocellulose - Benzalkonium Chloride (BZK) (Preliminary Experiments) 342 11.3 Health and Environmental Toxicity Evaluations of Active Antimicrobial Packaging 343 11.3.1 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) - the United States 344 11.3.2 General Toxic Evaluations on Packaging Materials (In Vivo, In Vitro Testing) - Europe 345 11.3.3 Specific Toxic Evaluation on Cellulosic and Nanocellulosic Materials 348 References 350 12 Composite Materials Based on PLA and its Applications in Food Packaging 355 Jesús R. Rodríguez-Núñez, Tomás J. Madera-Santana, Heidy Burrola-Núñez and Efrén G. Martínez-Encinas 12.1 Introduction 356 12.2 Synthesis of Polylactic Acid 356 12.3 Reinforcing Agents 359 12.3.1 Natural Fibers and Fillers 360 12.3.2 Synthetic Fibers and Fillers 366 12.4 Surface Modification of Fibers and Fillers 366 12.4.1 Physical Methods (Corona, Plasma, Irradiation Treatments) 367 12.4.2 Chemical Methods (Alkaline, Acetylation, Maleation, Silane, Enzymatic Treatment) 368 12.5 Nanostructures in the PLA Matrix 370 12.6 Processing Techniques 371 12.6.1 Processing Technologies of PLA Composites 372 12.6.1.1 Compression Molding 372 12.6.1.2 Extrusion 374 12.6.1.3 Injection Molding 375 12.6.1.4 Extrusion or Injection Blow Molding 377 12.6.1.5 Calendering, Cast Film, and Sheet 378 12.6.1.6 Thermoforming 379 12.6.1.7 Foaming PLA 379 12.7 Properties Related to Packaging Applications 381 12.7.1 Physical Properties 382 12.7.2 Mechanical Properties 384 12.7.3 Thermal Properties 385 12.7.4 Functional Properties 387 12.8 Recyclability of PLA 388 12.9 Biodegradation of PLA 389 12.10 Future Tendencies 390 References 391 13 Nanomaterial Migration from Composites into Food Matrices 401 Victor Gomes Lauriano Souza, Regiane Ribeiro-Santos, Patricia Freitas Rodrigues, Caio Gomide Otoni, Maria Paula Duarte, Isabel M. Coelhoso and Ana Luisa Fernando 13.1 Introduction 402 13.2 Nanotechnology in the Food Industry 403 13.2.1 Nanoparticle Characterization Techniques 403 13.2.2 Nanoparticle Characterization in Food Matrices 406 13.2.3 Nanomaterial Migration from Composites into Food Matrices: Case Studies 407 13.3 Nanoparticle Toxicology 413 13.3.1 Toxicological Tests 415 13.3.2 Toxicological Studies of ENMs Used in the Food Packaging Industry 417 13.3.3 Ecotoxicology of ENMs 419 13.4 Migration Assays and Current Legislation 420 13.4.1 Food Contact Nanomaterials 424 13.5 Conclusion 426 Acknowledgments 427 References 427 Index 437