Bachelor Thesis from the year 2014 in the subject Computer Science - Bioinformatics, grade: 165/200 (A+), , language: English, abstract: Aim: I sought to determine trauma-specific transcriptomic signatures for septic sub-cohorts. Methods: In retrospective large-scale data analysis, I applied (old and new methods), including lagged correlation between transcripts and clinical subtype counts (by integrating over 800 samples from trauma patients). Results: Focussing on novel pathways and correlation methods we revealed (persistently down-regulated) ribosomal genes and changed time profiles of metabolic enzyme precursors /transcripts. Candidates associated to insulin signalling, including HK3, hinted towards "metabolic syndrome". Correlation analysis yielded robust results for LCN2 and LTF (r>0.9), but only moderate associations to subtype counts (e.g. top-performing r (Eosinophil, IL5RA)>0.6). Discussion: Gene Centred Normalisation Reduces Ambiguity and Improves Interpretation.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.